Skip to main content
Log in

Nanotechnology for cleaner leather production: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The leather industry holds a significant place in the global economy, yet the scarcity of raw hides and skins, growing ethical concern, competitive leather substitutes and regulation of manufacturing processes with adverse environmental effects restrict the expansion of the leather industry. These issues may be partly solved by nanotechnology to add innovative products and to treat tannery effluents. This article reviews research gaps of conventional leather manufacturing processes including curing, tanning, and effluent treatment using nanotannage, photocatalysts and filtration. Nanomaterials have been applied at various stages of leather manufacturing to achieve better performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Fatah MA (2018) Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng J 9(4):3077–3092. https://doi.org/10.1016/j.asej.2018.08.001

    Article  Google Scholar 

  • Agarwal N, Nair MS, Mazumder A, Poluri KM (2018) Chapter 3—characterization of nanomaterials using nuclear magnetic resonance spectroscopy. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal NK, Thomas S (eds) In micro and nano technologies, characterization of nanomaterials, Woodhead Publishing, pp 61–102. https://doi.org/10.1016/b978-0-08-101973-3.00003-1

  • Ahmed TM, Taha S, Chaabane T, Akretce DE (2006) Nanofiltration process applied to the tannery solutions. Desalination 200(1):419–420. https://doi.org/10.1016/j.desal.2006.03.354

    Article  CAS  Google Scholar 

  • Anderson H (1954) The reddening of salted hides and fish. J Appl Microb 2:64–69

    CAS  Google Scholar 

  • Ansari MA, Khan HM, Khan AA, Pal R, Cameotra SS (2013) Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J. Nanoparticle Res 15:1970. https://doi.org/10.1007/s11051-013-1970-1

    Article  CAS  Google Scholar 

  • Aziz M, Ismail AF (2017) Chapter 5—X-ray photoelectron spectroscopy (XPS). In: Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D (eds) Membrane characterization. Elsevier, Amsterdam, pp 81–93. https://doi.org/10.1016/b978-0-444-63776-5.00005-x

    Chapter  Google Scholar 

  • Bailey DG (2003) The preservation of hides and skins. J Am Leather Chem As 98(8):308–319

    CAS  Google Scholar 

  • Bao Y, Ma JZ (2010) The interaction between collagen and aldehyde-acid copolymer/MMT nano-composite. JSLTC 94:53

    CAS  Google Scholar 

  • Berber D, Birbir M (2010) Examination of bacterial populations in salt, salted hides, soaking hides and soak liquors. J Am Leather Chem Assoc 105(10):320–326

    Google Scholar 

  • Bharat B (2010) Springer handbook of nanotechnology. Springer, Berlin. https://doi.org/10.1007/978-3-642-02525-9

    Book  Google Scholar 

  • Bhaumik M, Agarwal S, Gupta VK, Maity A (2016) Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent. J Colloid Interface Sci 470:257–267

    CAS  Google Scholar 

  • Bienkiewiez K (1983) Physical chemistry of leather manufacture, RE Krieger Publishing Company, Florida

  • Birbir M, Bailey DG (2000) Controlling the growth of extremely halophilic bacteria on brine cured cattle hides. J Soc Leather Technol Chem 84:201

    CAS  Google Scholar 

  • Boussu K, Zhang Y, Cocquyt J, Meeren PV, Volodin A, Haesendonck CV, Martens JA, Bruggen V (2006) Characterization of polymeric nanofiltration membranes for systematic analysis of membrane performance. J Memb Sci 278(1–2):418–427. https://doi.org/10.1016/j.memsci.2005.11.027

    Article  CAS  Google Scholar 

  • Bruce P, Davis CL (1934) The Davis family and Leather industry, 1834–1934. Ryereon Press, Toronto, p 11

    Google Scholar 

  • Buazar F (2019) Impact of biocompatible nanosilica on green stabilization of subgrade soil. Sci Rep 9:15147. https://doi.org/10.1038/s41598-019-51663-2

    Article  CAS  Google Scholar 

  • Buazar F, Alipouryan S, Kroushawi F et al (2015) Photodegradation of odorous 2-mercaptobenzoxazole through zinc oxide/hydroxyapatite nanocomposite. Appl Nanosci 5:719–729. https://doi.org/10.1007/s13204-014-0368-4

    Article  CAS  Google Scholar 

  • Buazar F, Baghlani-Nejazd MH, Badri M, Kashisaz M, Khaledi-Nasab A, Kroushawi F (2016a) Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch Stärke 68:796–804. https://doi.org/10.1002/star.201500347

    Article  CAS  Google Scholar 

  • Buazar F, Bavi M, Kroushawi F, Halvani M, Khaledi-Nasab A, Hossieni SA (2016b) Potato extract as reducing agent and stabiliser in a facile green one-step synthesis of ZnO nanoparticles. J Exp Nanosci 11(3):175–184. https://doi.org/10.1080/17458080.2015.1039610

    Article  CAS  Google Scholar 

  • Buazar F, Sweidi S, Badri M, Kroushawi F (2019) Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: a mechanistic approach. Green Process Synth 8(1):691–702. https://doi.org/10.1515/gps-2019-0040

    Article  CAS  Google Scholar 

  • Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM (2018a) Application of light scattering techniques to nanoparticle characterization and development. Front Chem 6:237. https://doi.org/10.3389/fchem.2018.00237

    Article  CAS  Google Scholar 

  • Carvalho I, Ferdov S, Mansilla C, Marques SM, Cerqueir MA, Pastrana LM, Henriques M, Gaidaue C, Ferreira P, Carvalho S (2018b) Development of antimicrobial leather modified with Ag–TiO2 nanoparticles for footwear industry. Sci Technol Mater 30(1):60–68. https://doi.org/10.1016/j.stmat.2018.09.002

    Article  Google Scholar 

  • Cassano A, Adzet J, Molinari R, Buonomenna MG, Roig J (2003) Membrane treatment by nanofiltration of exhausted vegetable tannin liquors from the leather industry. Water Res 37:2426–2434. https://doi.org/10.1016/s0043-1354(03)00016-2

    Article  CAS  Google Scholar 

  • Castaneda L, Valle J, Yang N, Pluskat S, Slowinska K (2008) Collagen cross-linking with Au nanoparticles. Biomacromol 9:3383–3388

    CAS  Google Scholar 

  • Chakrabarti S, Amba S, Ramasami T (2006) Study of landscape of global leather patents and analysis of technology linkages to trade. World Patent Inf 28:226–234

    Google Scholar 

  • Chowdhury M, Mostafa MG, Biswas TK et al (2015) Characterization of the effluents from leather processing industries. Environ Process 2:173–187. https://doi.org/10.1007/s40710-015-0065-7

    Article  Google Scholar 

  • Coates J (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry, Wiley, Chichester, pp 10815–10837

  • Cordon TC, Jones HW, Naghski J, Jiffee JW (1964) Benzalkonium chloride as a preservative for hide and skin. J Soc Leather Tech Chem 59:317–326

    CAS  Google Scholar 

  • Council for Leather Exports (CLE) Indian leather industry—overview, export performance and prospects. https://leatherindia.org/indian-leather-industry. Accessed 27/07/2020

  • Cousins BG, Allison HE, Doherty PJ, Edwards C, Garvey MJ, Martin DS et al (2007) Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. J Appl Microbiol 102:757–765

    CAS  Google Scholar 

  • Covington A (1997) Modern tanning chemistry. Chem Soc Rev 26:111–126. https://doi.org/10.1039/cs9972600111

    Article  CAS  Google Scholar 

  • Das M, Rangarajan K (2020) Impact of policy initiatives and collaborative synergy on sustainability and business growth of Indian SMEs. Indian Growth Dev Rev. https://doi.org/10.1108/IGDR-09-2019-0095

    Article  Google Scholar 

  • Dehghani MH, Taher MM, Bajpai AK, Heibati B, Tyagi I, Asif M, Agarwal S, Gupta VK (2015) Removal of noxious Cr(VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem Eng J 279:344–352

    CAS  Google Scholar 

  • Dixit S, Yadav A, Dwivedi PD, Das M (2015) Toxic hazards of leather industry and technologies to combat threat: a review. J Clean Prod 87:39–49. https://doi.org/10.1016/j.jclepro.2014.10.017

    Article  CAS  Google Scholar 

  • Doble M, Kumar A (2005) Biotreatment of industrial effluents. Elsevier Press, Burlington

    Google Scholar 

  • Duraivalan CK (1973) Growth of leather industry. Commerce 127:20

    Google Scholar 

  • Duran N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity, and possible mechanisms of action. Braz Chem Soc 21:949–959

    CAS  Google Scholar 

  • Dutta SS (1985) An introduction to the principles of leather manufacture, p 160

  • Eid MA, Al-Ashkara EA (2007) Speciation of chromium ions in tannery effluents and subsequent determination of Cr(VI) by ICP-AES. JALCA 97:451

    Google Scholar 

  • El-Zowalaty ME, Al-Ali SHH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ (2015) The ability of streptomycin-loaded chitosan coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int J Nanomed 10:3269–3274. https://doi.org/10.2147/ijn.s74469

    Article  CAS  Google Scholar 

  • Fan HJ, Li L, Shi B, He Q, Peng BY (2005) Characteristics of leather tanned with nano-SiO2. JALCA 100:22

    CAS  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2016) World statistical compendium for raw hides and skins, leather and leather footwear 1999–2015. http://www.fao.org/economic/est/est-commodities/hides-skins/en/. Accessed 27/07/2020

  • Gaidau C, Petica A, Plavan V, Ciobanu C, Micutz M, Tablet C, Hillebrand M (2009) Investigation on silver nanoparticles interaction with collagen based materials. J Optoelectron Adv Mater 11(6):845–851

    CAS  Google Scholar 

  • Gaidau C, Guirginca M, Dragomir T, Petica A, Chen W (2010) Study of collagen and leather functionalization by using metallic nanoparticles. J Optoelectron Adv Mater 12(10):2157–2163

    Google Scholar 

  • Gao DG, Ma JZ, Gao D, Lv B (2010) Study on diallyldimethyl ammonium chloride copolymer/nano SiO2 composite tannage. Leather Sci Eng 20:45–48

    CAS  Google Scholar 

  • Gebregeorgis A, Bhan C, Wilson O, Raghavan D (2013) Characterization of Silver/Bovine Serum Albumin (Ag/BSA) nanoparticles structure: morphological, compositional, and interaction studies. J Colloid Interface Sci 389(1):31–41

    CAS  Google Scholar 

  • George N, Chauhan PS, Kumar V, Puri N, Gupta N (2014) Approach to eco-friendly leather: characterization and application of an alkaline protease for chemical free dehairing of skins and hides at pilot scale. J Clean Prod 79:249–257. https://doi.org/10.1016/j.jclepro.2014.05.046

    Article  CAS  Google Scholar 

  • Geraldes V, Minhalma M, Pinho MN, Anil A, Ozgunay H, Bitlisli BO, Sari O (2009) Nanofiltration of cork wastewaters and their possible use in leather industry as tanning agents. Polish J Environ Stud 18(3):353–357

    CAS  Google Scholar 

  • Gholizadeh BS, Buazar F, Hosseini SM, Mousavi SM (2018) Enhanced antibacterial activity, mechanical and physical properties of alginate/hydroxyapatite bionanocomposite film. Int J Biol Macromol 116:786–792. https://doi.org/10.1016/j.ijbiomac.2018.05.104

    Article  CAS  Google Scholar 

  • Ghosh R, Chattopadhyay PK, Chattopadhyay B, Pal D (2010) Antibiotic resistance profile of halophilic microorganisms isolated from tannery effluent. Ind J Biotech 9:80–86

    CAS  Google Scholar 

  • Giannossa LC, Longano D, Ditaranto N, Nitti MA, Paladini F, Pollini M, Rai M, Sannino A, Valentini A, Cioffi N (2013) Metal nanoantimicrobials for textile applications, Nanotechnol Rev 2(3):307–331. https://doi.org/10.1515/ntrev-2013-0004

    Article  CAS  Google Scholar 

  • Guan X, Chang J, Xu Z, Chen Y, Fan H (2016) Remediation of chromium(III)-contaminated tannery effluents by using gallic acid-conjugated magnetite nanoparticles. RSC Adv 6:29054–29063. https://doi.org/10.1039/C6RA02122K

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45(6):2207–2212. https://doi.org/10.1016/j.watres.2011.01.012

    Article  CAS  Google Scholar 

  • Gurera D, Bhushan B (2018) Fabrication of bioinspired superliquiphobic synthetic leather with self-cleaning and low adhesion. Colloids Surf A Physicochem Eng Asp 545:130–137. https://doi.org/10.1016/j.colsurfa.2018.02.052

    Article  CAS  Google Scholar 

  • Hashem MA, Momen MA, Hasan M (2018) Leaf paste aided goat skin preservation: significant chloride reduction in tannery. J Environ Chem Eng 6:4423–4428. https://doi.org/10.1016/j.jece.2018.06.050

    Article  CAS  Google Scholar 

  • Heidemann E (1993) Fundamentals of leather manufacture. In: Eduard Roether KG (ed), p 296. ISBN 3-7929-0206-0

  • Hu L (2012) Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5(4):6423–6430. https://doi.org/10.1039/c2ee02414d

    Article  Google Scholar 

  • Huang Z, Wang X, Yang D (2015) Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci Eng 8:226–232

    Google Scholar 

  • Hughes IR (1974) Temporary preservation of hides using boric acid. J Soc Leather Tech Chem 58:100–103

    CAS  Google Scholar 

  • India Brand Equity Foundation. Leather industry and exports. http://wwww.ibef.org. Accessed on 20/12/2020

  • Ingham B (2015) X-ray scattering characterisation of nanoparticles. Crystallogr Rev 1(4):229–303. https://doi.org/10.1080/0889311x.2015.1024114

    Article  Google Scholar 

  • Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009. https://doi.org/10.1007/s00253-013-5422-8

    Article  CAS  Google Scholar 

  • International Trade Centre. Trade map, Trade Statistics for International business development. https://www.intracen.org/itc/market-info-tools/statistics-import-product-country/. Accessed on 10/12/2020

  • Iyappan K, Ponrasu T, Sangeethapriya V, Gayathri VS, Suguna L (2013) An eco-friendly method for short term preservation of skins/hides using Semecarpus anacardium nut extract. Environ Sci Pollut Res 20:6324–6330. https://doi.org/10.1007/s11356-013-1683-0

    Article  CAS  Google Scholar 

  • Iyappan K, Vedaraman N, Suguna L (2020) An eco-friendly saltless method of preservation of skins using A. marmelos extract. Environ Sci Pollut Res 27:23707–23713. https://doi.org/10.1007/s11356-020-08633-3

    Article  CAS  Google Scholar 

  • Jain M, Yadav M, Kohout T, Lahtinen M, Garg VK, Sillanpaa M (2018) Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour Ind 20:54–74

    Google Scholar 

  • Jiang W, Pelaez M, Dionysiou DD, Entezari MH, Tsoutsou D, O’Shea K (2013) Chromium (VI) removal by maghemite nanoparticles. Chem Eng J 222:527–533

    CAS  Google Scholar 

  • Jiang Y, Li J, Li B, Liu H, Li Z, Li L (2015) Study on a novel multifunctional nanocomposite as flame retardant of leather. Polym Degrad Stab 115:110–116. https://doi.org/10.1016/j.polymdegradstab.2015.02.018

    Article  CAS  Google Scholar 

  • Jin T, He Y (2011) Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res 13:6877–6885

    CAS  Google Scholar 

  • Kanagaraj J, Chandrababu NK (2002) Alternatives to salt curing techniques—a review. J Sci Ind Res 61:339–348

    CAS  Google Scholar 

  • Kanagaraj J, Babu NKC, Sadulla S, Rajkumar GS (2000) New approach to less-salt preservation of raw skin/hide. J Am Leather Chem Asp 95(10):368–374

    CAS  Google Scholar 

  • Kanagaraj J, Chandra Babu NK, Sadulla S, Suseela Rajakumar G, Chandra Kumar N (2001) Cleaner techniques for the preservation of raw goat skin. J Clean Prod 9:261–268

    Google Scholar 

  • Kanagaraj J, Sastry P, Rose C (2005a) Effective preservation of raw goat skin for the reduction of total dissolved solids. J Clean Prod 13:959–996

    Google Scholar 

  • Kanagaraj J, Sundar JV, Muralidharan C, Sadulla S (2005b) Alternatives to sodium chloride in prevention of skin protein degradation—a case study. J Clean Prod 13:825–831

    Google Scholar 

  • Kandamchira A, Selvam S, Marimuthu N, Janardhanan SK, Fathima NN (2013) Influence of functionalized nanoparticles on conformational stability of type I collagen for possible biomedical applications. Mater Sci Eng, C 33(8):4985–4988. https://doi.org/10.1016/j.msec.2013.08.018

    Article  CAS  Google Scholar 

  • Khalafi T, Buazar F, Ghanemi K (2019) Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants. Sci Rep 9:6866. https://doi.org/10.1038/s41598-019-43368-3

    Article  CAS  Google Scholar 

  • Kishen A, Shrestha S, Shrestha A, Cheng C, Goh C (2016) Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation. Dent Mater 32(8):968–977. https://doi.org/10.1016/j.dental.2016.05.005

    Article  CAS  Google Scholar 

  • Koopi H, Buazar F (2018) A novel one-pot biosynthesis of pure alpha aluminium oxide nanoparticles using the microalgae Sargassum ilicifolium: a green marine approach. Ceram Int 44(8):8940–8945. https://doi.org/10.1016/j.ceramint.2018.02.091

    Article  CAS  Google Scholar 

  • Kumar CSSR (2012) Raman spectroscopy for nanomaterials characterization. Springer, Berlin. https://doi.org/10.1007/978-3-642-20620-7

    Book  Google Scholar 

  • Li Y, Gao D, Ma J, Lu B (2011) Synthesis of vinyl polymer/ZnO nano composite and its application in leather tanning agent. Mater Sci Forum 694:103–107. https://doi.org/10.4028/www.scientific.net/MSF.694.103

    Article  CAS  Google Scholar 

  • Li Kaijun, Ruiquan Yu, Zhu Ruixin, Liang Ruifeng, Liu Gongyan, Peng Biyu (2019) pH-sensitive and chromium-loaded mineralized nanoparticles as a tanning agent for cleaner leather production. ACS Sustain Chem Eng 7(9):8660–8669. https://doi.org/10.1021/acssuschemeng.9b00482

    Article  CAS  Google Scholar 

  • Lindquist NC, de Albuquerque CDL, Sobral-Filho RG et al (2019) High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat Nanotechnol 14:981–987. https://doi.org/10.1038/s41565-019-0535-6

    Article  CAS  Google Scholar 

  • Liu YS, Chen Y, Yao J, Fan HJ, Shi B, Peng BY (2010) An environmentally-friendly leather-making process based on silica chemistry. JALCA 105:84

    Google Scholar 

  • Lyu B, Chang Rui, Gao Dangge, Ma Jianzhong (2018) Chromium footprint reduction: nanocomposites as efficient pretanning agents for cowhide shoe upper leather. ACS Sustain Chem Eng 6(4):5413–5423. https://doi.org/10.1021/acssuschemeng.8b00233

    Article  CAS  Google Scholar 

  • Ma JZ, Chen XJ, Chu Y, Yang ZS (2003) The preparation and application of a montmorillonite-based nanocomposite in leather making. JSLTC 87:131

    CAS  Google Scholar 

  • Ma J, Lv X, Gao D, Li Y, Lv B, Zhang J (2014) Nanocomposite-based green tanning process of suede leather to enhance chromium uptake. J Clean Prod 72:120–126. https://doi.org/10.1016/j.jclepro.2014.03.016

    Article  CAS  Google Scholar 

  • Mallikarjun G, Saravanan P, Reddy GVR (2002) Microemulsion solutions of acrylic copolymers for retanning applications on chrome tanned goat skins. JALCA 97:215

    CAS  Google Scholar 

  • Mandal A, Sekar S, Chandrasekaran N, Mukherjee A, Sastry TP (2015) Vibrational spectroscopic investigation on ineteraction of sago starch capped silver nanoparticle with collagen: a comparative physicochemical study using FT-IR and FT-Raman techniques. RSC Adv 5:15763–15771. https://doi.org/10.1039/c4ra09694k

    Article  CAS  Google Scholar 

  • Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff AB, Saad WZ, Namvar F, Navaderi M (2017) Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules 22:6

    Google Scholar 

  • Mohammed SA, Madhan B, Demissie BA, Velappan B, Tamilselvi AC (2016) Rumex abyssinicus (mekmeko) Ethiopian plant material for preservation of goat skins: approach for cleaner leather manufacture. J Clean Prod 133:1043–1052. https://doi.org/10.1016/j.jclepro.2016.06.043

    Article  CAS  Google Scholar 

  • Molinari R, Buonomenna M, Cassano A, Drioli E (2004) Recovery and recycle of tannins in the leather industry by nanofiltration membranes. J Chem Technol Biotechnol 79:361–368. https://doi.org/10.1002/jctb.983

    Article  CAS  Google Scholar 

  • Munz KH (2007) Silicates for raw hide curing. J Am Leather Chem Asp 102(1):16–21

    CAS  Google Scholar 

  • Murugappan G, Sreeram KJ (2019) Effective use of enzymatic processes in beamhouse through nanoparticle immobilization

  • Murugappan G, Zakir MJA, Jayakumar GC, Khambhaty Y, Sreeram KJ, Rao JR (2016) A novel approach to enzymatic unhairing and fiber opening of skin using enzymes immobilized on magnetite nanoparticles. ACS Sustain Chem Eng 4(3):828–834. https://doi.org/10.1021/acssuschemeng.5b00869

    Article  CAS  Google Scholar 

  • Murugappan G, Khambhaty Y, Sreeram KJ (2020) Protease immobilized nanoparticles: a cleaner and sustainable approach to dehairing of skin. Appl Nanosci 10:213–221. https://doi.org/10.1007/s13204-019-01113-2

    Article  CAS  Google Scholar 

  • Muthukrishnan L, Chellappa M, Nanda A, Thukkaram S, Selvaraj G et al (2019a) Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect toward human epidermoid larynx carcinoma (HEp-2) cells. RSC Adv 9:15874–15886. https://doi.org/10.1039/c9ra01072f

    Article  CAS  Google Scholar 

  • Muthukrishnan L, Chellappa M, Nanda A (2019b) Bio-engineering and cellular imaging of silver nanoparticles as weaponry against multidrug resistant human pathogens. J Photochem Photobiol B Biol 194:119–127. https://doi.org/10.1016/j.jphotobiol.2019.03.021

    Article  CAS  Google Scholar 

  • Onubogu Kenechukwu, Medina-Ramirez Iliana, Bashir Sajid, Luo Zhiping, Liu Jingbo (2011) Colloidal synthesis and nanocharacterization of engineered noble metal nanoparticles. Int J Green Nanotechnol 3(2):140–151. https://doi.org/10.1080/19430892.2011.574932

    Article  CAS  Google Scholar 

  • Pal M, Malhotra M, Mandal MK, Paine TK, Pal P (2020) Reecycling of wastewater from tannery industry through membrane-integrated hybrid treatment using a novel graphene oxide nanocomposite. J Water Process 36:101324. https://doi.org/10.1016/j.jwpe.2020.101324

    Article  Google Scholar 

  • Pan H, Zhang ZJ, Zhang JX, Dang HX (2005) The preparation and application of a nanocomposite tanning agent-MPNS/SMA. JSLTC 89:153

    CAS  Google Scholar 

  • Pan H, Guang-Long Li, Rui-Qi Liu, Su-Xia Wang, Xiao-Dong Wang (2017) Preparation, characterization and application of dispersible and spherical Nano-SiO2@copolymer nanocomposite in leather tanning. Appl Surf Sci 426:376–385. https://doi.org/10.1016/j.apsusc.2017.07.106

    Article  CAS  Google Scholar 

  • Petica A, Gaidau C, Ignat M et al (2015) Doped TiO2 nanophotocatalysts for leather surface finishing with self-cleaning properties. J Coat Technol Res 2:1153–1163. https://doi.org/10.1007/s11998-015-9711-2

    Article  CAS  Google Scholar 

  • Pillay K, Cukrowska EM, Coville NJ (2009) Mlti-walled carbon nanotubes as adsorbents for the removal of part per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 166:1067–1075

    CAS  Google Scholar 

  • Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P (2017) Biomedical applications of nanotechnology. Biophys Rev 9(2):79–89. https://doi.org/10.1007/s12551-016-0246-2

    Article  CAS  Google Scholar 

  • Ranganathan K, Kabadgi SD (2011) Studies on feasibility of reverse osmosis (membrane) technology for treatment of tannery wastewater. J Environ Prot Sci 2(1):37–46. https://doi.org/10.4236/jep.2011.21004

    Article  CAS  Google Scholar 

  • Raza H (2019) Nanocharacterization. In: Freshman lectures on nanotechnology. Undergraduate lecture notes in physics, Springer, Cham. https://doi.org/10.1007/978-3-030-11733-7_10

  • Ren G, Wang X, Huang P, Zhong B, Zhang Z, Yang L, Yang X (2017) Chromium (VI) absorption from wastewater using porous magnetite nanoparticle prepared from titanium residue by a novel solid-phase reduction method. Sci Total Environ 607–608:900–910

    Google Scholar 

  • Ren L, Dong J, Chi Z, Huang H (2018) Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer. J Environ Sci 73:96–106

    Google Scholar 

  • Russel AE, Tandt KR (1997) Liricure-powder biocide composition for hide and skin preservation. J Soc Leather Tech Chem Assoc 87:137–143

    Google Scholar 

  • Rýglová Š, Braun M, Suchý T (2017a) Collagen and its modifications—crucial aspects with concern to its processing and analysis. Macromol Mater Eng. https://doi.org/10.1002/mame.201600460

    Article  Google Scholar 

  • Rýglová Š, Braun M, Suchý T (2017b) Collagen and its modifications—crucial aspects with concern to its processing and analysis. Macromol Mater Eng 302:1600460

    Google Scholar 

  • Samuel MS, Subramaniyan V, Bhattacharya J, Chidambaram R, Qureshi T, Pradeep Singh ND (2018) Ultrasonic-assisted synthesis of graphene oxide- fungal hyphae: an efficient and reclaimable adsorbent for chromium (VI) removal from aqueous solution. Ultrason Sonochem 48:412–417

    CAS  Google Scholar 

  • Samuel MS, Subramaniyan V, Bhattacharya J, Chidambaram R, Qureshi T, Pradeep Singh ND (2019) Efficient removal of Chromium (VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int J Biol Macromol 121:285–292

    CAS  Google Scholar 

  • Sangeetha S, Ramamoorthy U, Sreeram KJ, Nair BU (2012) Enhancing collagen stability through nanostructures containing chromium (III) oxide. Colloids Surf B 100:36–41. https://doi.org/10.1016/j.colsurfb.2012.05.015

    Article  CAS  Google Scholar 

  • Sepahvand M, Buazar F, Sayahi MH (2020) Novel marine-based gold nanocatalyst in solvent-free synthesis of polyhydroquinoline derivatives: green and sustainable protocol. Appl Organomet Chem. https://doi.org/10.1002/aoc.6000

    Article  Google Scholar 

  • Serrano E, Rus G, JavierGarcía-Martínez A (2009) Nanotechnology for sustainable energy. Renew Sust Energ Rev 13(9):2373–2384. https://doi.org/10.1016/j.rser.2009.06.003

    Article  CAS  Google Scholar 

  • Setshedi KZ, Bhaumik M, Onyango MS, Maity A (2015) High-performance towards Cr(VI) removal using multi-active sites of polypyrrole-graphene oxide nanocomposites: batch and column studies. Chem Eng J 262:921–931

    CAS  Google Scholar 

  • Shaban M, Abukhadra MR, Rabia M, Elkader YA, Abd El-Halim MR (2018) Investigation the adsorption properties of graphene oxide and polyaniline nano/micro structures for efficient removal of toxic Cr(VI) contaminants from aqueous solutions; kinetic and equilibrium studies. Rendiconti Lincei Scienze Fisiche e Naturali 29:141–154

    Google Scholar 

  • Shah M, Badwaik V, Kherde Y, Waghwani HK, Modi T, Aguilar ZP et al (2014) Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci 19:1320–1344. https://doi.org/10.2741/4284

    Article  Google Scholar 

  • Sharphouse JH (1983) Leather technician’s handbook. Leather Producer’s Association, p 104. ISBN 0-9502285-1-6

  • Sheikhmohammadi A, Mohseni SM, Khodadadi R, Sardar M, Abtahi M, Mahdavi S, Keramati H et al (2017) Application of graphene oxide modified with 8-hydroxyquinoline for the adsorption of Cr(VI) from wastewater: optimization, kinetic, thermodynamic and equilibrium studies. J Mol Liq 233:75–88

    CAS  Google Scholar 

  • Shi Jiabo, Wang Chunhua, Liyuan Hu, Xiao Yuanhang, Lin Wei (2019) Novel wet-white tanning approach based on Laponite clay nanoparticles for reduced formaldehyde release and improved physical performances. ACS Sustain Chem Eng 7(1):1195–1201. https://doi.org/10.1021/acssuschemeng.8b04845

    Article  CAS  Google Scholar 

  • Singh J, Dutta T, Kim KH et al (2018) Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  • Smith DJ (2015) Chapter 1: characterization of nanomaterials using transmission electron microscopy. Nanocharacterisation. https://doi.org/10.1039/9781782621867-00001

    Article  Google Scholar 

  • Srivatsan KV, Duraipandy N, Begum S, Lakra R, Ramamurthy U, Korrapati PS, Kiran MS (2015) Effect of curcumin caged silver nanoparticle on collagen stabilization for biomedical applications. Int J Biol Marcomol 75:306–315. https://doi.org/10.1016/j.ijbiomac.2015.01.050

    Article  CAS  Google Scholar 

  • Su D (2017) Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ 2(2):70–83. https://doi.org/10.1016/j.gee.2017.02.001

    Article  Google Scholar 

  • Suresh S, Vennila S, Muthukrishnan L, Gurunathan K et al (2020) Exploring the therapeutic potentials of phytomediated silver nanoparticles formed via Calotropis procera (Ait) R. Br. Root extract. J Exp Nanosci 15(1):217–232. https://doi.org/10.1080/17458080.2020.1769842

    Article  CAS  Google Scholar 

  • Suthanthararajan R, Ravindranath E, Chitra K, Umamaheswari B, Ramesh T, Rajamani S (2004) Membrane application for recovery and reuse of water from treated tannery wastewater. Desalination 164:151

    CAS  Google Scholar 

  • Tancous JJ, Jayasimhulu K (1973) Bacteriology of curing. J Am Leather Chem As 68:132

    CAS  Google Scholar 

  • Thanikaivelan P, Rao JR, Nair BU, Ramasami T (2004) Progress and recent trends in biotechnological methods for leather processing. Trend Biotechnol 22(4):181–188. https://doi.org/10.1016/j.tibtech.2004.02.008

    Article  CAS  Google Scholar 

  • Thorstensen TC (1976) Practical leather technology. The University of California. R. E. Kreiger Publishing Company. ISBN 9780882752846

  • Thygarajan S, Amudeswari AV (1994) Indian Leather 2010, CLRI, Chennai, p 128

  • Tokida Y, Adachi S (2012) Photoluminescence spectroscopy and energy-level analysis of metal-organic-deposited Ga2O3:Cr3+ films. J Appl Phys 112:063522. https://doi.org/10.1063/1.4754517

    Article  CAS  Google Scholar 

  • United Nations Industrial Development Organization (UNIDO). World Manufacturing Production. Statistics for Quarter III, 2019 (https://www.unido.org/sites/default/files/files/2019-12/World_manufacturing_production_2019_q3_.pdf)

  • Usha R, Ramasami T (2000) Effect of crosslinking agents (basic chromium sulphate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fiber. Thermochim Acta 356(1–2):59–66. https://doi.org/10.1016/S0040-6031(00)00518-9

    Article  CAS  Google Scholar 

  • Vedaraman N, Sandhya KV, Brindha V, Tamilselvi A, Velappan KC, Sundar VJ, Kanagaraj J, Muralidharan C (2013) De-oiled neem cake as potential bio-additive for low-salt raw skin preservation: a process for salinity reduction in tanneries. Int J Environ Sci Technol 13:1563–1572

    Google Scholar 

  • Venkatachalam PS, Sadulla S, Duraiswamy B (1981) Short term preservation of hide with neem oil. Science 28:151

    CAS  Google Scholar 

  • Vijayalakshmi K, Judith R, Suseela R (2009) Novel plant based formulations for short term preservation of animal skins. J Sci Ind Res 2009:699–707

    Google Scholar 

  • Wahab R, Hwang I, Shin HS, Kim YS, Musarrat J, Siddiqui M (2012) In: Tiwari A, Mishra AK, Kobayashi H, Turner APF (eds) Intelligent nanomaterials: processes, properties, and applications, Scrivener Publishing LLC, Salem, pp 183–212

  • Wang XC, An HR, Sun M, Luo YH, Feng JY (2005) An acrylic resin retanning agent with a reinforcing effect: synthesised by high solids content microemulsion copolymerization. JSLTC 89:164

    CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/ijn.s121956

    Article  CAS  Google Scholar 

  • Waterer JW (1946) Leather in life, art and industry. Faber & Faber, p 7

  • Watt A (1934) The art of leather manufacture, London, vol 193, p 5

  • Yadav HM, Kim J, Pawar SH (2016) Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J Chem Eng 33:1989–1998. https://doi.org/10.1007/s11814-016-0118-2

    Article  CAS  Google Scholar 

  • Yamamoto O, Ohira T, Alvarez K, Fukuda M (2010) Antibacterial characteristics of CaCO3-MgO composites. Mater Sci Eng, B 173:208–212. https://doi.org/10.1016/j.mseb.2009.12.007

    Article  CAS  Google Scholar 

  • You C, Han C, Wang X et al (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201. https://doi.org/10.1007/s11033-012-1792-8

    Article  CAS  Google Scholar 

  • Zhang L, Gao W, Fang Y et al (2016) Photoluminescence spectroscopy technology to probe phase transition process of Ba0.95Eu0.05TiO3. Exp Tech 40:603–607. https://doi.org/10.1007/s40799-016-0060-6

    Article  CAS  Google Scholar 

  • Zhong J, Yan J (2016) Seeing is believing: atomic force microscopy imaging for nanomaterial research. RSC Adv 6:1103–1121. https://doi.org/10.1039/c5ra22186b

    Article  CAS  Google Scholar 

  • Zhu R, Yang C, Li K, Yu R, Liu G, Peng B (2020) A smart high chrome exhaustion and chrome-less tanning system based on chromium (III)-loaded nanoparticles for cleaner leather processing. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.123278

    Article  Google Scholar 

  • Zsigmondy R (1914) Colloids and the ultra-microscope. J Am Chem Soc 31(8):951–952. https://doi.org/10.1021/ja01938a017

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the contributors and their articles which served as a base for preparing this manuscript. The timely support rendered by Saveetha Institute of Medical and Technical Sciences and the experience gained at CSIR-Central Leather Research Institute (CLRI) through Research Associateship (CSIR Award No.31/6 (412)/2017-EMR I, 2017) are greatly acknowledged. Finally the author wants to thank Dr. C. Rose and Dr. C. Muralidharan, Chief Scientists of CLRI for their invaluable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmipathy Muthukrishnan.

Ethics declarations

Competing interest

The author(s) declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukrishnan, L. Nanotechnology for cleaner leather production: a review. Environ Chem Lett 19, 2527–2549 (2021). https://doi.org/10.1007/s10311-020-01172-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-01172-w

Keywords

Navigation