Skip to main content
Log in

Biosynthesis and effects of copper nanoparticles on plants

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Copper nanoparticles have improved properties compared to the bulk copper material. Copper nanoparticles indeed find applications in gas sensors, heat transfer fluids, catalysis, solar energy and batteries. Antibacterial and antifungal activities of copper nanoparticles find applications in the agriculture and healthcare sectors. Nonetheless, careless use of copper nanoparticles may cause environmental pollution and health effects. Here we review the biosynthesis of copper nanoparticles using plant materials, named phytosynthesis, and micro-organisms. We also discuss the effect of copper nanoparticles on crops and pathogenic micro-organisms. Copper nanoparticles varying in sizes from 5 to 295 nm have been synthesized using leaf extracts and latex from plants, and using bacteria and fungi. Biosynthesized copper nanoparticles show good antimicrobial activity inhibiting the growth of pathogenic bacteria and pathogenic fungi. Copper nanoparticles enhance the germination and growth of some plants at lower concentrations, whereas high concentrations result in retarded growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576. doi:10.1007/s13204-013-0233-x

    Article  CAS  Google Scholar 

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815–823

    CAS  Google Scholar 

  • Ahamed M, Alhadlaq HA, Khan MAM, Karuppiah P, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater. doi:10.1155/2014/637858

    Google Scholar 

  • Alishah H, Pourseyedi S, Ebrahimipour SY, Mahani SE, Rafiei N (2016) Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rendiconti Lincei. doi:10.1007/s12210-016-0574-y

    Google Scholar 

  • Angrasan JKVM, Subbaiya R (2014) Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 3(9):768–774

    Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827. doi:10.1021/es202660k

    Article  CAS  Google Scholar 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12(18):2163–2175

    Article  CAS  Google Scholar 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14(2):229–235. doi:10.1007/s10311-015-0543-1

    Article  CAS  Google Scholar 

  • Chandra S, Kumar A, Tomar PK (2014) Synthesis and characterization of copper nanoparticles by reducing agent. J Saudi Chem Soc 18:149–153

    Article  CAS  Google Scholar 

  • Chen Y, Wang D, Zhu X, Zheng X, Feng L (2012) Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ Sci Technol 46:12452–12458. doi:10.1021/es302646q

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D-Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262. doi:10.1021/cm0505244

    Article  CAS  Google Scholar 

  • Costa MVJDA, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119. doi:10.1007/s11099-015-0167-5

    Article  Google Scholar 

  • Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. J Nanomater. doi:10.1155/2015/789089

    Google Scholar 

  • Devi HS, Singh TD (2014) Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange. Adv Electron Electr Eng 4(1):83–88. doi:10.2174/0929867054637617

    Google Scholar 

  • Ghorbani HR, Mehr FP, Poor AK (2015) Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium. Orient J Chem 31(1):527–529. doi:10.13005/ojc/310165

    Article  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752. doi:10.1039/c3ra42118j

    Article  CAS  Google Scholar 

  • Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Tech 1(1):6–11

    Article  Google Scholar 

  • Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B Biointerfaces 95:284–288. doi:10.1016/j.colsurfb.2012.03.005

    Article  CAS  Google Scholar 

  • Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BL, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 6:3191–3196. doi:10.1166/jnn.2008.095

    Article  Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghib F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Biostruct 7(3):999–1005

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229. doi:10.1186/1556-276X-9-229

    Article  Google Scholar 

  • Jayalakshmi Yogamoorthi A (2014) Green synthesis of copper oxide nanoparticles using aqueous extract of flowers of Cassia alata and particles characterization. Int J Nanomater Biostruct 4(4):66–71

    Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17. doi:10.1016/j.matlet.2013.10.011

    Article  CAS  Google Scholar 

  • Karimi J, Mohsenzadeh S (2015) Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera. Synth React Inorg Met Org Nano Met Chem 45:895–898

    Article  CAS  Google Scholar 

  • Kasana RC, Panwar NR, Kaul RK, Kumar P (2016) Copper nanoparticles in agriculture: biological synthesis and antimicrobial activity. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 3, Sustainable agriculture reviews, vol 23. Springer, Berlin, pp 129–143. doi:10.1007/978-3-319-48009-1_5

  • Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B Biointerfaces 128:17–22. doi:10.1016/j.colsurfb.2015.02.009

    Article  CAS  Google Scholar 

  • Kumar B, Kumari S, Luis C, Alexis D, Yolanda A (2015) Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J Saudi Chem Soc. doi:10.1016/j.jscs.2015.01.009

    Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mungbean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921. doi:10.1897/07-481.1

    Article  CAS  Google Scholar 

  • Longano D, Ditaranto N, Cioffi N, Di Niso F, Sibillano T, Ancona A, Conte A, Del Nobile MA, Sabbatini L, Torsi L (2012) Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem 403(4):1179–1186. doi:10.1007/s00216-011-5689-5

    Article  CAS  Google Scholar 

  • Maithreyee MN, Gowda R (2015) Influence of nanoparticles in enhancing seed quality of aged seeds. Mysore J Agric Sci 49(2):310–313

    Google Scholar 

  • Nagaonkar D, Shende S, Rai M (2015) Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol Prog 31(2):557–565. doi:10.1002/btpr.2040

    Article  CAS  Google Scholar 

  • Naika HR, Lingarajua K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 9:7–12. doi:10.1016/j.jtusci.2014.04.006

    Article  Google Scholar 

  • Nair PM, Chung IM (2014a) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162(1–3):342–352. doi:10.1007/s12011-014-0106-5

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014b) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification and molecular level changes. Environ Sci Pollut Res 21:12709–12722. doi:10.1007/s11356-014-3210-3

    Article  CAS  Google Scholar 

  • Nair PMG, Chung M (2015) Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure. J Plant Growth Regul 34:350–361. doi:10.1007/s00344-014-9468-3

    Article  CAS  Google Scholar 

  • Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8(4):374–382. doi:10.3109/17435390.2013.789936

    Article  CAS  Google Scholar 

  • Prabhu YT, Rao KV, Sai VS, Pavani T (2015) A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J Saudi Chem Soc. doi:10.1016/j.jscs.2015.04.002

    Google Scholar 

  • Ramanathan R, Field MR, O’Mullane AP, Smooker PM, Bhargava SK, Bansal V (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5:2300–2306. doi:10.1039/c2nr32887a

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590. doi:10.1016/j.ijantimicag.2008.12.004

    Article  CAS  Google Scholar 

  • Salvadori MR, Lepre LF, Ando RA, Oller Do Nascimento CA, Correa B (2013) Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon region. PLoS ONE 8(11):e80519. doi:10.1371/journal.pone.0080519

    Article  Google Scholar 

  • Salvadori MR, Ando RA, Oller Do Nascimento CA, Corrêa B (2014) Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J Environ Sci Health A Tox Hazard Subst Environ Eng 49(11):1286–1295. doi:10.1080/10934529.2014.910067

    Article  CAS  Google Scholar 

  • Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9:495–509. doi:10.1039/b9pp00180h

    Article  CAS  Google Scholar 

  • Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, Amer M, Domokos-Szabolcsy E, El-Ramady H (2016) Nanoparticles, soils, plants and sustainable agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 1, Sustainable agriculture reviews, vol 20. Springer, Berlin, pp 283–311. doi:10.1007/978-3-319-39303-2_10

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 3(9):374–383

    Google Scholar 

  • Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31(6):865–873. doi:10.1007/s11274-015-1840-3

    Article  CAS  Google Scholar 

  • Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6:365–369. doi:10.2174/157341310791659062

    Article  CAS  Google Scholar 

  • Sivaraj R, Rahman PK, Rajiv P, Salam HA, Venckatesh R (2014) Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta A Mol Biomol Spectrosc 133:178–181. doi:10.1016/j.saa.2014.05.048

    Article  CAS  Google Scholar 

  • Song L, Vijver MG, Peijnenburg WJGM (2015) Comparative toxicity of copper nanoparticles across three Lemnaceae species. Sci Total Environ. doi:10.1016/j.scitotenv.2015.02.079

    Google Scholar 

  • Subhankari I, Nayak PL (2013) Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2(1):14–17

    Google Scholar 

  • Sutradhar P, Saha M, Maiti D (2014) Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J Nanostruct Chem 4:86. doi:10.1007/s40097-014-0086-1

    Article  Google Scholar 

  • Van NL, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670. doi:10.1016/j.chemosphere.2015.09.028

    Article  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM 62(12):102–104

    Article  CAS  Google Scholar 

  • Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater. doi:10.1155/2016/1957612

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Director, ICAR-Central Arid Zone Research Institute, Jodhpur, for necessary facilities and support. The financial assistance received under the project CRP on nanotechnology is duly acknowledged. There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chand Kasana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasana, R.C., Panwar, N.R., Kaul, R.K. et al. Biosynthesis and effects of copper nanoparticles on plants. Environ Chem Lett 15, 233–240 (2017). https://doi.org/10.1007/s10311-017-0615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0615-5

Keywords

Navigation