Skip to main content
Log in

Design optimization of dispersion compensating fibers and their packaging techniques

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

Design optimization of dispersion compensating fibers (DCFs) based on the fundamental mode is described considering the packaging technique. Optical performances of the DCF modules are mainly limited by the macro-, micro-bending loss and the polarization mode dispersion that strongly depend on the module structure. Two types of DCF modules are demonstrated as examples. Bobbin-less module structure that mitigates the bending limit is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Lin, H. Kogelnik, and L.G. Cohen, "Optical pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3-1.7 μmm spectral region," Opt. Lett. 5 (11), 476-478 (1980).

    ADS  Google Scholar 

  • H. Izadpanah, C. Lin, J.L. Gimlett, A.J. Antos, D.W. Hall, and D.K. Smith, "Dispersion compensation in 1310 nm optimized SMF's using optical equalizer fibre, EDFAs and 1310/1550 WDM," Electron. Lett. 28 (15), 1469-1470 (1992).

    Article  Google Scholar 

  • A.M. Vengsarkar and W.A. Reed, "Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation," Opt. Lett. 18 (11), 924-926 (1993).

    ADS  Google Scholar 

  • A.J. Antos and D.K. Smith, "Design and characterization of dispersion compensating fiber based on the LP01 mode," J. Lightwave Technol. 12 (10), 1739-1745 (1994).

    Article  ADS  Google Scholar 

  • A. Bjarklev, T. Rasmussen, O. Lumhol, K. Rottwitt, and M. Helmer, "Optimal design of single-cladded dispersion-compensating optical fibers," Opt. Lett. 19 (7), 457-459 (1994).

    ADS  Google Scholar 

  • M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensating fibre with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30 (2), 161-163 (1994).

    Article  MathSciNet  Google Scholar 

  • C.D. Chen, J.-M.P. Delavaux, B.W. Hakki, O. Mizuhara, T.V. Nguyen, R.J. Nuyts, K. Ogawa, Y.K. Park, R.E. Tench, L.D. Tzeng, and P.D. Yeates, "Field experiment of 10 Gbit/s, 360 km transmission through embedded standard (non-DSF) fibre cables," Electron. Lett. 30 (14), 1159-1160 (1994).

    Article  Google Scholar 

  • A.D. Ellis and D.M. Spirit, "Unrepeatered transmission over 80 km standard fibre at 40 Gb/s," Electron. Lett. 30 (1), 72-73 (1994).

    Article  Google Scholar 

  • M. Kakui, T. Kato, T. Kashiwada, K. Nakazato, C. Fukuda, M. Onishi, and M. Nishimura, "2.4 Gbit/s repeaterless transmission over 306 km non-dispersion-shifted fibre using directly modulated DFB-LD and dispersion compensating fibre," Electron. Lett. 31 (1), 51-52 (1995).

    Article  Google Scholar 

  • R.W. Tkach, R.M. Derosier, A.H. Gnauck, A.M. Vengsarkar, D.W. Peckham, J.L. Zyskind, J.W. Sulfoff, and A.R. Chraplyvy, "Transmission of eight 20 Gb/s channels over 232 km of conventional single-mode fiber," Photon. Technol. Lett. 7 (11), 1369-1371 (1995).

    Article  ADS  Google Scholar 

  • M. Onishi, T. Kashiwada, Y. Koyano, Y. Ishiguro, M. Nishimura, and H. Kanamori, "Third-order dispersion compensating fibres for non-zero dispersion shifted fibre links," Electron. Lett. 32, 25 (1996).

    Article  Google Scholar 

  • L.G. Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Maganussen, C.C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6 (2), 164-180 (2000).

    Article  ADS  Google Scholar 

  • M. Wandel et al., "Dispersion compensating fibers for non-zero dispersion fibers," in Technical digest of OFC2002, WU1 (2002).

  • L. Gruner-Nielsen et al., "Status and future promises for dispersion compensating fibres," in Proceedings of ECOC2002, Paper 6.1.1, 2002.

  • L.V. Jorgensen et al., "Next generation dispersion compensating modules for 40 Gbit/s systems," in Technical Proceedings of NFOEC2002, pp.1171-1182, 2002.

  • T. Kato, M. Hirano, A. Tada, K. Fukuda, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8 (2), 231-239 (2002).

    Article  ADS  Google Scholar 

  • C.D. Poole, J.M. Wiesenfeld, and A.R. McCormick, "Broadband dispersion compensation by using the higher-order spatial mode in a two mode fiber," Opt. Lett. 17 (14), 985-987 (1992).

    ADS  Google Scholar 

  • A.H. Gnauck, L.D. Garrett, Y. Danziger, U. Levy, and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre," Electron. Lett. 36 (23), 1946-1947 (2000).

    Article  Google Scholar 

  • S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarcello, W. Reed, P. Wisk, and J. Fleming, "Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation," Electron. Lett. 38 (24), 1507-1508 (2002).

    Article  Google Scholar 

  • P. Palai, K. Thyanarajan, and B.P. Pal, "Erbium-doped dispersion compensating fiber for simultaneous compensation of loss and dispersion," Opt. Fiber Technol. 3 (3), 149-153 (1997).

    Article  ADS  Google Scholar 

  • J.L. Auguste, J.M. Blondy, J. Mauny, J. Marcou, B. Dussardier, G. Monnom, R. Jinclal, K. Thyagarajan, and B.P. Pal, "Conception, realization and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8 (1), 89-105 (2002).

    Article  ADS  Google Scholar 

  • R.J. Nuyts, Y.K. Park, and P. Gallion, "Dispersion equalization of a 10 Gb/s repeatered transmission system using dispersion compensating fibers," J. Lightwave Technol. 15 (1), 31-42 (1997).

    Article  ADS  Google Scholar 

  • J.T. Krause, W.A. Reed and K.L. Walker, "Splice loss of single mode fibre as related to fusion time, temperature and index profile alteration," J. Lighwave Technol. 4 (7), 837-840 (1986).

    Article  ADS  Google Scholar 

  • D.B. Mortimore and J.V. Wright, "Low-loss joints between dissimilar fibres by tapering fusion splices," Electron. Lett. 22 (6), 318-319 (1986).

    Article  Google Scholar 

  • K. Shiraish, Y. Aizawa, and S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," J. Lightwave Technol. 8 (8), 1151-1161 (1990).

    Article  ADS  Google Scholar 

  • H.Y. Tam, "Simple fusion splicing technique for reducing splicing loss between standard single mode fibres and erbium-doped fibre," Electron. Lett. 27 (17), 1597-1599 (1991).

    Article  Google Scholar 

  • M.J. Holmes, F.P. Payne, and D.M. Spirit, "Matching fibres for low loss coupling into fiber applications," Electron. Lett. 26 (25), 2102-2104 (1990).

    Article  Google Scholar 

  • R. Ulrich, S.C. Rashleigh, and W. Eickhoff, "Bending-induced birefringence in single-mode fibers," Opt. Lett. 5 (6), 273-275 (1980).

    ADS  Google Scholar 

  • G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, Boston, 1989).

  • S. Tsuda and V.L. daSilva, "Transmission of 80 ×10 Gbit/s WDM channels with 50 GHz spacing over 500 km of LEAF fiber," in Technical digest of OFC'2000, TuJ6-1, pp. 149-151 (2000).

  • D.W. Peckham, A.F. Judy and R.B. Kummer, "Reduced dispersion slope, non-zero dispersion fiber," in Proceeding of ECOC'98, vol. 1, pp.139-140, 1998.

  • S. Bigo, E. Lach, Y. Frignac, D. Hamoir, P. Sillard, W. Idler, S. Gauchard, A. Bertaina, S. Borne, L. Lorcy, N. Torabi, B. Franz, P. Nouchi, P. Guenot, L. Fleury, G. Wien, G. Le Ber, R. Fritschi, B. Junginger, M. Kaiser, D. Bayart, G. Veith, J.-P. Hamaide, and J.-L. Beylat, "Transmission of 32 ETDM channels at 40 Gbit/s (1.28 Tbit/s capacity) over 3 × 100 km of TeraLightTM fibre," Electron. Lett. 37 (7), 448-449 (2001).

    Article  Google Scholar 

  • S. Gurib, A. Bertaina, S. Gauchard, S. Bigo, J.-P. Hamaide, J.-L. Beylat, L.-A. de Montmorillon, R. Sauvageon, P. Nouchi, J.-C. Rousseau, and J.-F. Chariot, "Experimental evaluation of TeralightTM resistance to cross-nonlinear effects for channel spacings down to 50 GHz," Electron. Lett. 36 (11), 959-961 (2000).

    Article  Google Scholar 

  • B. Zhu, L. Leng, L.E. Nelson, Y. Qian, L. Cowsar, S. Stulz, C. Doerr, L. Stulz, S. Chandrasekhar, S. Radic, D. Vengsarkar, Z. Chen, J. Park, K.S. Feder, H. Thiele, J. Bromage, L. Gruner-Nielsen, and S. Knudsen, "3.08 Tbit/s (77 × 42.7 Gbit/s) WDM transmission over 1200 km fibre with 100 km repeater spacing using dual C- and L-band hybrid Raman/erbium-doped inline amplifiers," Electron. Lett. 37 (13), 844-845 (2001).

    Article  Google Scholar 

  • S.N. Knudsen, M.O. Pedersen, and L. Gruner-Nielsen, "Optimization of dispersion compensating fibres for cabled long-haul applications," Electron. Lett. 36 (25), 2067-2068 (2000).

    Article  Google Scholar 

  • K. Okamoto, "Comparison of calculated and measured impulse responses of optical fibers," Appl. Opt. 18 (13), 2199 (1979).

    Article  ADS  Google Scholar 

  • T. Kato, Y. Suetsugu, and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers, " Opt. Lett. 20 (22), 2279 (1995).

    ADS  Google Scholar 

  • K. Petermann, "Microbending loss in monomode fibers," Electron. Lett. 12 (4), 107-109 (1976).

    Article  Google Scholar 

  • K. Petermann, "Theory of microbending loss in monomode fibers with arbitrary refractive index profile," Arch. Elektron. ubertr. 30, 337 (1976).

    Google Scholar 

  • J. Sakai and T. Kimura, "Bending loss of propagation mode in arbitrary index profile optical fibers," Appl. Opt. 17 (10), 1499-1506 (1978).

    ADS  Google Scholar 

  • N. Gisin, J.-P.V. der Weid, and J.-P. Pellaux, "Polarization mode dispersion of short and long single-mode fibers," J. Lightwave Technol. 9 (7), 821-827 (1991).

    Article  ADS  Google Scholar 

  • D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Sys. Tech. J. 56 (5), 703-718 (1977).

    Google Scholar 

  • K. Petermann, "Constraints for fundamental-mode spot size for broadband dispersion -compensated single-mode fibres," Electron. Lett. 19 (18), 712-714 (1983).

    Article  Google Scholar 

  • C. Pask, "Physical interpretation of Petermann's strange spot size for single-mode fibres," Electron. Lett. 20 (3), 144-145 (1984).

    Article  Google Scholar 

  • B. Edvold and L. G.-Nielsen, "New technique for reducing the splice loss to dispersion compensating fiber," in Proceeding of ECOC'96, pp. 2.245-2.248, 1996.

  • Y. Mitsunaga, Y. Katsuyama, H. Kobayashi and Y. Ishida, "Failure prediction for long length optical fiber based on proof testing," J. Appl. Phys. 53 (7), 4847-4853 (1982).

    Article  ADS  Google Scholar 

  • GR-63 BELLCORE, "Network Equipment-Building Systems (NEBS) Requirement," 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, T., Hirano, M., Fujii, T. et al. Design optimization of dispersion compensating fibers and their packaging techniques. J Optic Comm Rep 4, 86–109 (2007). https://doi.org/10.1007/s10297-006-0074-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-006-0074-4

Keywords

Navigation