Skip to main content
Log in

Biology and biotechnology of microbial pilus nanowires

  • Environmental Microbiology - Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Type IV pili (T4P) are bacterial appendages used for cell adhesion and surface motility. In metal-reducing bacteria in the genus Geobacter, they have the unique property of being conductive and essential to wire cells to extracellular electron acceptors and other cells within biofilms. These electroactive bacteria use a conserved pathway for biological assembly and disassembly of a short and aromatic dense peptide subunit (pilin). The polymerization of the pilins clusters aromatic residues optimally for charge transport and exposes ligands for metal immobilization and reduction. The simple design yet unique functionalities of conductive T4P afford opportunities for the scaled-up production of recombinant pilins and their in vitro assembly into electronic biomaterials of biotechnological interest. This review summarizes current knowledge of conductive T4P biogenesis and functions critical to actualize applications in bioelectronics, bioremediation, and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdelbasir SM, Hassan SSM, Kamel AH, El-Nasr RS (2018) Status of electronic waste recycling techniques: a review. Environ Sci Pollut Res 25:16533–16547. https://doi.org/10.1007/s11356-018-2136-6

    Article  Google Scholar 

  2. Adams DW, Pereira JM, Stoudmann C, Stutzmann S, Blokesch M (2019) The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. PLoS Genet 15:e1008393. https://doi.org/10.1371/journal.pgen.1008393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adler-Abramovich L, Marco P, Arnon ZA, Creasey RC, Michaels TC, Levin A, Scurr DJ, Roberts CJ, Knowles TP, Tendler SJ, Gazit E (2016) Controlling the physical dimensions of peptide nanotubes by supramolecular polymer coassembly. ACS Nano 10:7436–7442. https://doi.org/10.1021/acsnano.6b01587

    Article  CAS  PubMed  Google Scholar 

  4. Aukema KG, Kron EM, Herdendorf TJ, Forest KT (2005) Functional dissection of a conserved motif within the pilus retraction protein PilT. J Bacteriol 187:611–618. https://doi.org/10.1128/JB.187.2.611-618.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Awate B, Steidl RJ, Hamlischer T, Reguera G (2017) Stimulation of electro-fermentation in single-chamber microbial electrolysis cells driven by genetically engineered anode biofilms. J Power Sources 356:510–518. https://doi.org/10.1016/j.jpowsour.2017.02.053

    Article  CAS  Google Scholar 

  6. Berry JL, Pelicic V (2015) Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 39:134–154. https://doi.org/10.1093/femsre/fuu001

    Article  CAS  PubMed  Google Scholar 

  7. Boyd JM, Koga T, Lory S (1994) Identification and characterization of PilS, an essential regulator of pilin expression in Pseudomonas aeruginosa. Mol Gen Genet 243:565–574. https://doi.org/10.1007/bf00284205

    Article  CAS  PubMed  Google Scholar 

  8. Burrows LL (2012) Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 66:493–520. https://doi.org/10.1146/annurev-micro-092611-150055

    Article  CAS  PubMed  Google Scholar 

  9. Butler JE, Young ND, Lovley DR (2010) Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11:40. https://doi.org/10.1186/1471-2164-11-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clausen M, Jakovljevic V, Sogaard-Andersen L, Maier B (2009) High-force generation is a conserved property of type IV pilus systems. J Bacteriol 191:4633–4638. https://doi.org/10.1128/Jb.00396-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G (2011) Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci USA 108:15248–15252. https://doi.org/10.1073/pnas.1108616108

    Article  PubMed  Google Scholar 

  12. Cologgi DL, Speers AM, Bullard BA, Kelly SD, Reguera G (2014) Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms. Appl Environ Microbiol 80:6638–6646. https://doi.org/10.1128/AEM.02289-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cosert KM, Castro-Forero A, Steidl RJ, Worden RM, Reguera G (2019) Bottom-up fabrication of protein nanowires via controlled self-assembly of recombinant Geobacter pilins. mBio. https://doi.org/10.1128/mBio.02721-19

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cosert KM, Reguera G (2019) Voltammetric study of conductive planar assemblies of Geobacter nanowire pilins unmasks their ability to bind and mineralize divalent cobalt. J Ind Microbiol Biotechnol 46:1239–1249. https://doi.org/10.1007/s10295-019-02167-5

    Article  CAS  PubMed  Google Scholar 

  15. Cosert KM, Steidl RJ, Castro-Forero A, Worden RM, Reguera G (2017) Electronic characterization of Geobacter sulfurreducens pilins in self-assembled monolayers unmasks tunnelling and hopping conduction pathways. Phys Chem Chem Phys 19:11163–11172. https://doi.org/10.1039/c7cp00885f

    Article  CAS  PubMed  Google Scholar 

  16. Esteve-Nunez A, Sosnik J, Visconti P, Lovley DR (2008) Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. Environ Microbiol 10:497–505

    Article  CAS  Google Scholar 

  17. Feliciano GT, da Silva AJR, Reguera G, Artacho E (2012) The molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles. J Phys Chem A 116:8023–8030. https://doi.org/10.1021/jp302232p

    Article  CAS  PubMed  Google Scholar 

  18. Feliciano GT, Steidl RJ, Reguera G (2015) Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys Chem Chem Phys 17:22217–22226. https://doi.org/10.1039/C5CP03432A

    Article  CAS  PubMed  Google Scholar 

  19. Filman DJ, Marino SF, Ward JE, Yang L, Mester Z, Bullitt E, Lovley DR, Strauss M (2019) Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Commun Biol 2:219. https://doi.org/10.1038/s42003-019-0448-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Friedrich C, Bulyha I, Sogaard-Andersen L (2014) Outside-in assembly pathway of the type IV pilus system in Myxococcus xanthus. J Bacteriol 196:378–390. https://doi.org/10.1128/JB.01094-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giltner CL, Nguyen Y, Burrows LL (2012) Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev 76:740–772. https://doi.org/10.1128/MMBR.00035-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hernandez-Eligio A, Andrade A, Soto L, Morett E, Juarez K (2017) The unphosphorylated form of the PilR two-component system regulates pilA gene expression in Geobacter sulfurreducens. Environ Sci Pollut Res Int 24:25693–25701. https://doi.org/10.1007/s11356-016-6192-5

    Article  CAS  PubMed  Google Scholar 

  23. Holmes DE, Dang Y, Walker DJ, Lovley DR (2016) The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microbial Genomics 2:e000072. https://doi.org/10.1099/mgen.0.000072

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ishimoto KS, Lory S (1992) Identification of pilR, which encodes a transcriptional activator of the Pseudomonas aeruginosa pilin gene. J Bacteriol 174:3514–3521. https://doi.org/10.1128/jb.174.11.3514-3521.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jakovljevic V, Leonardy S, Hoppert M, Søgaard-Andersen L (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190:2411–2421. https://doi.org/10.1128/jb.01793-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Juarez K, Kim BC, Nevin K, Olvera L, Reguera G, Lovley DR, Methe BA (2009) PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens. J Mol Microbiol Biotechnol 16:146–158. https://doi.org/10.1159/000115849

    Article  CAS  PubMed  Google Scholar 

  27. Karuppiah V, Collins RF, Thistlethwaite A, Gao Y, Derrick JP (2013) Structure and assembly of an inner membrane platform for initiation of type IV pilus biogenesis. Proc Natl Acad Sci USA 110:E4638–4647. https://doi.org/10.1073/pnas.1312313110

    Article  CAS  PubMed  Google Scholar 

  28. Kilmury SL, Burrows LL (2016) Type IV pilins regulate their own expression via direct intramembrane interactions with the sensor kinase PilS. Proc Natl Acad Sci USA 113:6017–6022. https://doi.org/10.1073/pnas.1512947113

    Article  CAS  PubMed  Google Scholar 

  29. Krushkal J, Juarez K, Barbe JF, Qu Y, Andrade A, Puljic M, Adkins RM, Lovley DR, Ueki T (2010) Genome-wide survey for PilR recognition sites of the metal-reducing prokaryote Geobacter sulfurreducens. Gene 469:31–44. https://doi.org/10.1016/j.gene.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  30. Lampa-Pastirk S, Veazey JP, Walsh KA, Feliciano GT, Steidl RJ, Tessmer SH, Reguera G (2016) Thermally activated charge transport in microbial protein nanowires. Sci Rep 6:23517. https://doi.org/10.1038/srep23517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lentini CJ, Wankel SD, Hansel CM (2012) Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front Microbiol 3:404. https://doi.org/10.3389/fmicb.2012.00404

    Article  PubMed  PubMed Central  Google Scholar 

  32. Long Y-Z, Yu M, Sun B, Gu C-Z, Fan Z (2012) Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem Soc Rev 41:4560–4580. https://doi.org/10.1039/c2cs15335a

    Article  CAS  PubMed  Google Scholar 

  33. Maier B, Wong GC (2015) How bacteria use type IV pili machinery on surfaces. Trends Microbiol 23:775–788. https://doi.org/10.1016/j.tim.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  34. Office of the Secretary Notice 83 FR 23295 (2018) Final list of critical minerals 2018. U.S. Department of the Interior document 2018-10667, pp 23295–23296. https://www.federalregister.gov/documents/2018/05/18/2018-10667/final-list-of-critical-minerals-2018

  35. Reguera G (2018) Harnessing the power of microbial nanowires. Microb Biotechnol 11:979–994. https://doi.org/10.1111/1751-7915.13280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reguera G (2018) Microbial nanowires and electroactive biofilms. FEMS Microbiol Ecol 94:fiy086. https://doi.org/10.1093/femsec/fiy086

    Article  CAS  Google Scholar 

  37. Reguera G, Kashefi K (2019) The electrifying physiology of Geobacter bacteria, 30 years on. Adv Microb Physiol 74:1–96. https://doi.org/10.1016/bs.ampbs.2019.02.007

    Article  PubMed  Google Scholar 

  38. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101. https://doi.org/10.1038/nature03661

    Article  CAS  PubMed  Google Scholar 

  39. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production lead to increased current in microbial fuel cells. Appl Environ Microbiol 72:7345–7348

    Article  CAS  Google Scholar 

  40. Richter LV, Sandler SJ, Weis RM (2012) Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J Bacteriol 194:2551–2563. https://doi.org/10.1128/JB.06366-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sexton JA, Pinkner JS, Roth R, Heuser JE, Hultgren SJ, Vogel JP (2004) The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol 186:1658–1666. https://doi.org/10.1128/jb.186.6.1658-1666.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shu C, Xiao K, Yan Q, Sun X (2016) Comparative analysis of Type IV pilin in Desulfuromonadales. Front Microbiol 7:2080. https://doi.org/10.3389/fmicb.2016.02080

    Article  PubMed  PubMed Central  Google Scholar 

  43. Speers AM, Reguera G (2012) Consolidated bioprocessing of AFEX-pretreated corn stover to ethanol and hydrogen in a microbial electrolysis cell. Environ Sci Technol 46:7875–7881. https://doi.org/10.1021/es3008497

    Article  CAS  PubMed  Google Scholar 

  44. Speers AM, Reguera G (2012) Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms. Appl Environ Microbiol 78:437–444. https://doi.org/10.1128/aem.06782-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Speers AM, Schindler BD, Hwang J, Genc A, Reguera G (2016) Genetic identification of a PilT motor in Geobacter sulfurreducens reveals a role for pilus retraction in extracellular electron transfer. Front Microbiol 7:1578. https://doi.org/10.3389/fmicb.2016.01578

    Article  PubMed  PubMed Central  Google Scholar 

  46. Speers AM, Young JM, Reguera G (2014) Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. Environ Sci Technol 48:6350–6358. https://doi.org/10.1021/es500690a

    Article  CAS  PubMed  Google Scholar 

  47. Steidl R, Lampa-Pastirk S, Reguera G (2016) Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nat Commun 7:12217. https://doi.org/10.1038/ncomms12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Straub KL, Kappler A, Schink B (2005) Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria. In: Leadbetter JR (ed) Mehods in enzymology. pp 58–77. https://doi.org/10.1016/50076-6879(05)97004

  49. Tan Y, Adhikari RY, Malvankar NS, Ward JE, Nevin KP, Woodard TL, Smith JA, Snoeyenbos-West OL, Franks AE, Tuominen MT, Lovley DR (2016) The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter. Front Microbiol 7:980. https://doi.org/10.3389/fmicb.2016.00980

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tan Y, Adhikari RY, Malvankar NS, Ward JE, Woodard TL, Nevin KP, Lovley DR (2017) Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity. mBio. https://doi.org/10.1128/mBio.02203-16

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ueki T, Walker DJF, Woodard TL, Nevin KP, Nonnenmann SS, Lovley DR (2020) An Escherichia coli chassis for production of electrically conductive protein nanowires. ACS Synth Biol 9:647–654. https://doi.org/10.1021/acssynbio.9b00506

    Article  CAS  PubMed  Google Scholar 

  52. Veazey JP, Reguera G, Tessmer SH (2011) Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy. Phys Rev E 84:060901. https://doi.org/10.1103/PhysRevE.84.060901

    Article  CAS  Google Scholar 

  53. Vignon G, Kohler R, Larquet E, Giroux S, Prevost MC, Roux P, Pugsley AP (2003) Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J Bacteriol 185:3416–3428. https://doi.org/10.1128/jb.185.11.3416-3428.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang F, Gu Y, O’Brien JP, Yi SM, Yalcin SE, Srikanth V, Shen C, Vu D, Ing NL, Hochbaum AI, Egelman EH, Malvankar NS (2019) Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177(2):361–369.e10. https://doi.org/10.1016/j.cell.2019.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Whitchurch CB, Mattick JS (1994) Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Mol Microbiol 13:1079–1091. https://doi.org/10.1111/j.1365-2958.1994.tb00499.x

    Article  CAS  PubMed  Google Scholar 

  56. Yalcin SE, O’Brien JP, Gu Y, Reiss K, Yi SM, Jain R, Srikanth V, Dahl PJ, Huynh W, Vu D, Acharya A, Chaudhuri S, Varga T, Batista VS, Malvankar NS (2020) Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nat Chem Biol 16(10):1136–1142. https://doi.org/10.1038/s41589-020-0623-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant EAR1629439 from the National Science Foundation and Hatch project 1011745 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Reguera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, M.M., Reguera, G. Biology and biotechnology of microbial pilus nanowires. J Ind Microbiol Biotechnol 47, 897–907 (2020). https://doi.org/10.1007/s10295-020-02312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02312-5

Keywords

Navigation