Skip to main content
Log in

The unphosphorylated form of the PilR two-component system regulates pilA gene expression in Geobacter sulfurreducens

  • 4th International Symposium on Environmental Biotechnology and Engineering-2014
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In Geobacter sulfurreducens, metal reduction and generation of bioelectricity require the participation of several elements, and among them, the type IV pili has an essential role. The pilus is composed of multiple PilA monomers. Expression of pilA gene depends mainly on the σ54 factor and the response regulator protein PilR. In this work, we characterized the role of the PilS-PilR two-component system in the regulation of the pilA gene expression. Experimental evidence indicates that PilS is autophosphorylated at the His-334 residue, which in turn is transferred to the conserved Asp-53 in PilR. Contrary to other PilS-PilR systems, substitution D53N in PilR resulted in higher activation of the pilA gene. By using a pilA::luxCDABE fusion with different promoter fragments and in vitro DNA-binding assays, we demonstrated the existence of multiple functional PilR binding sites. A regulatory model in which the non-phosphorylated PilR protein directs activation of pilA expression by binding to two sites in the promoter region of this gene is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albanesi D, Mansilla MC, Mendoza D (2004) The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol 186(9):2655–2663

    Article  CAS  Google Scholar 

  • Barrios H, Valderrama B, Morett E (1999) Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 27(22):4305–4313

    Article  CAS  Google Scholar 

  • Bjarnason J, Southward CM, Surette M (2003) Genomic profiling of iron-responsive genes in Salmonella enterica serovar Typhimurium by high-throughput screening of a random promoter library. J Bacteriol 185(16):4973–4982

    Article  CAS  Google Scholar 

  • Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138(2):179–207

    Article  CAS  Google Scholar 

  • Coppi MV, Leang C, Sandler SJ, Lovley DR (2001) Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187

    Article  CAS  Google Scholar 

  • Dahl MK, Msadek T, Kunst F, Rapoport G (1992) The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem 267(20):14509–14514

    CAS  Google Scholar 

  • Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35

    Article  Google Scholar 

  • Gao R, Mack TR, Stock AM (2007) Bacterial response regulators: versatile regulatory strategies from common domains. TiBS 32(5):225–234

    CAS  Google Scholar 

  • González G, Labastida A, Salazar E, Jiménez V, Vega L, Olvera M, Dávila S, Morett E, Juárez K (2014) Genome wide analysis of the expression and regulation of genes involved in electron transfer mechanism in Geobacter sulfurreducens. In: Poggi-Varaldo HM, Bretón-Deval LM, Camacho-Pérez B, Escamilla-Alvarado C, Escobedo-Acuña G, Hernández-Flores G, Hernández-Vera R, Muñoz-Páez KM, Romero-Cedillo L, Sotelo-Navarro PX, Ortega-Clemente A, Sastre-Conde I, Macarie H, Solorza-Feria O, Ríos-Leal E, Esparza-García F, Camarillo-Ravelo D, Romero-Ramírez Y, Barrera-Cortés J, Balagurusamy N (eds) Book of Abstracts Environ Biotech Eng–2014. Ed. Cinvestav, México DF, México, p 261

    Google Scholar 

  • Hamoen LW, Van Werkhoven AF, Venema G, Dubnau D (2000) The pleiotropic response regulator DegU functions as a priming protein in competent development in Bacillus subtilis. Proc Natl Acad Sci 97(16):9246–9251

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Heinrich DW, Glasgow AC (1997) Transcriptional regulation of type 4 pilin genes and the site-specific recombinase gene, piv, in Moraxella lacunata and Moraxella bovis. J Bacteriol 179(23):7298–72305

    Article  CAS  Google Scholar 

  • Hobbs M, Collie ES, Free PD, Livingston SP, Mattick JS (1993) PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 7:669–682

    Article  CAS  Google Scholar 

  • Ishimoto KS, Lory S (1989) Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. Proc Natl Acad Sci USA 86:1954–1957

    Article  CAS  Google Scholar 

  • Ishimoto KS, Lory S (1992) Identification of pilR, which encodes a transcriptional activator of the Pseudomonas aeruginosa pilin gene. J Bacteriol 174:3514–3521

    Article  CAS  Google Scholar 

  • Juárez K, Kim BC, Nevin K, Olvera L, Reguera G, Lovley DR, Methé BA (2009) PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens. J Mol Microbiol Biotechnol 16:146–158

    Article  Google Scholar 

  • Kehl-Fie TE, Porsch EA, Miller SE, St Geme JW (2009) Expression of Kingella kingae type IV pili is regulated by σ54, PilS, and PilR. J Bacteriol 191(15):4976–4986

    Article  CAS  Google Scholar 

  • Kobayashi K (2007) Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. M Microbiol 66(2):395–409

    Article  CAS  Google Scholar 

  • Krushkal J, Juárez K, Barbe JF, Qu Y, Andrade A, Piljic M, Adkins RM, Lovley DR, Ueki T (2010) Genome-wide survey for PilR recognition sites of the metal-reducing prokaryote Geobacter sulfurreducens. Gene 469:31–44

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microbiol Physiol 49:219–286

    Article  CAS  Google Scholar 

  • Ma S, Wozniak DJ, Ohman DE (1997) Identification of the histidine protein kinase KinB in Pseudomonas and its phosphorylation of the alginate regulator AlgB. J Biol Chem 272(29):17952–17960

    Article  CAS  Google Scholar 

  • Ma S, Selvaraj U, Ohman DE, Quarless R, Hassett DJ, Wozniak DJ (1998) Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol 180(4):956–968

    CAS  Google Scholar 

  • Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314

    Article  CAS  Google Scholar 

  • Methé BA et al (2003) The genome of Geobacter sulfurreducens: insights into metal reduction in subsurface environments. Science 302(5652):1967–1969

    Article  Google Scholar 

  • Mitrophanov A, Groisman EA (2008) Signal integration in bacterial two-component regulatory systems. Genes Dev 22:2601–2611

    Article  CAS  Google Scholar 

  • Morett E, Segovia L (1993) The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175(19):6067–6074

    Article  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  CAS  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. App Environ Microbiol 72:7345–7348

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EE, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Shimane K, Ogura M (2004) Mutational analysis of the helix-turn-helix region of Bacillus subtilis response regulator DegU, and identification of cis-acting sequences for DegU in the aprE and comK promoters. J Biochem 136:387–397

    Article  CAS  Google Scholar 

  • Tsukahara K, Ogura M (2008) Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB. BMC Microbiol 8:8

    Article  Google Scholar 

  • Ueki T, Lovley DR (2010) Novel regulatory cascades controlling expression of nitrogen-fixation genes in Geobacter sulfurreducens. Nucleic Acids Res 38(21):7485–7499

    Article  CAS  Google Scholar 

  • Ueki T, Leang C, Inoue K, Lovley DR (2012) Identification of multicomponent histidine-aspartate phosphorelay system controlling flagellar and motility gene expression in Geobacter species. J Biol Chem 287(14):10958–10966

    Article  CAS  Google Scholar 

  • Wu SS, Kaiser D (1997) Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 179:7748–7758

    Article  CAS  Google Scholar 

  • Yan B, Methé BA, Lovley DR, Krushkal J (2004) Computational prediction of conserved operons and phylogenetic footprinting of transcription regulatory elements in the metal-reducing bacterial family Geobacteraceae. J Theor Biol 230(1):133–144

    Article  CAS  Google Scholar 

  • Zakikhany K, Harrington CR, Nimtz M, Hinton JC, Römling U (2010) Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium. Mol Microbiol 77(3):771–786

    Article  CAS  Google Scholar 

  • Zapf J, Madhusudan M, Grimshaw CE, Hoch JA, Varughese KI, Whiteley JM (1998) A source of response regulator autophosphatase activity: the critical role of a residue adjacent to the Spo0F autophosphorylation active site. Biochemistry 37(21):7725–7732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACyT-179684 grant. AHE was the recipient of a CONACyT postdoctoral fellowship. AA was the recipient of a postdoctoral fellowship from ICyTDF and DGAPA, UNAM. We thank Ana Lilia Tirado Chamu and Paúl Gaytan for technical support and Alejandro Huerta for sharing pCS26-Pac plasmid. Oligonucleotides and automated sequencing was performed at Unit for DNA Sequence and Synthesis of the Instituto de Biotecnología, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy Juárez.

Additional information

Responsible editor: Philippe Garrigues

Alberto Hernández-Eligio CONACyT Research Fellow

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Eligio, A., Andrade, Á., Soto, L. et al. The unphosphorylated form of the PilR two-component system regulates pilA gene expression in Geobacter sulfurreducens . Environ Sci Pollut Res 24, 25693–25701 (2017). https://doi.org/10.1007/s11356-016-6192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6192-5

Keywords

Navigation