Skip to main content

Advertisement

Log in

A regulated synthetic operon facilitates stable overexpression of multigene terpenoid pathway in Bacillus subtilis

  • Metabolic Engineering and Synthetic Biology - Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The creation of microbial cell factories for sustainable production of natural products is important for medical and industrial applications. This requires stable expression of biosynthetic pathways in a host organism with favorable fermentation properties such as Bacillus subtilis. The aim of this study is to construct B. subtilis strains that produce valuable terpenoid compounds by overexpressing the innate methylerythritol phosphate (MEP) pathway. A synthetic operon allowing the concerted and regulated expression of multiple genes was developed. Up to 8 genes have been combined in this operon and a stably inherited plasmid-based vector was constructed resulting in a high production of C30 carotenoids. For this, two vectors were examined, one with rolling circle replication and another with theta replication. Theta-replication constructs were clearly superior in structural and segregational stability compared to rolling circle constructs. A strain overexpressing all eight genes of the MEP pathway on a theta-replicating plasmid clearly produced the highest level of carotenoids. The level of transcription for each gene in the operon was similar as RT-qPCR analysis indicated. Hence, that corresponding strain can be used as a stable cell factory for production of terpenoids. This is the first report of merging and stably expressing this large-size operon (eight genes) from a plasmid-based system in B. subtilis enabling high C30 carotenoid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdallah II, Quax WJ (2017) A glimpse into the biosynthesis of terpenoids. KnE Life Sci 3:81. https://doi.org/10.18502/kls.v3i5.981

    Article  Google Scholar 

  2. Ajikumar P, Xiao W-H, Tyo KEJ et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74. https://doi.org/10.1126/science.1191652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bretzel W, Schurter W, Ludwig B et al (1999) Commercial riboflavin production by recombinant Bacillus subtilis: down-stream processing and comparison of the composition of riboflavin produced by fermentation or chemical synthesis. J Ind Microbiol Biotechnol 22:19–26. https://doi.org/10.1038/sj.jim.2900604

    Article  CAS  Google Scholar 

  4. Bron S, Meijer W, Holsappel S et al (1991) Plasmid instability and molecular cloning in Bacillus subtilis. Res Microbiol 142:875–883. https://doi.org/10.1016/0923-2508(91)90068-L

    Article  PubMed  CAS  Google Scholar 

  5. Castillo-Hair S, Fujita M, Igoshin OA et al (2019) An engineered B. subtilis inducible promoter system with over 10,000-fold dynamic range. ACS Synth Biol 8:1673–1678. https://doi.org/10.1021/acssynbio.8b00469

    Article  PubMed  CAS  Google Scholar 

  6. Covello PS (2008) Making artemisinin. Phytochemistry 69:2881–2885. https://doi.org/10.1016/j.phytochem.2008.10.001

    Article  PubMed  CAS  Google Scholar 

  7. Dong H, Zhang D (2014) Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact 13:63. https://doi.org/10.1186/1475-2859-13-63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Guan Z, Xue D, Abdallah II et al (2015) Metabolic engineering of Bacillus subtilis for terpenoid production. Appl Microbiol Biotechnol 99:9395–9406. https://doi.org/10.1007/s00253-015-6950-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Guiziou S, Sauveplane V, Chang H-J et al (2016) A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Res 44:7495–7508. https://doi.org/10.1093/nar/gkw624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hess BM, Xue J, Markillie LM et al (2013) Coregulation of terpenoid pathway genes and prediction of isoprene production in Bacillus subtilis using transcriptomics. PLoS One 8:e66104. https://doi.org/10.1371/journal.pone.0066104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jannière L, Bruand C, Dusko Ehrlich S (1990) Structurally stable Bacillus subtilis cloning vectors. Gene 87:53–61. https://doi.org/10.1016/0378-1119(90)90495-D

    Article  PubMed  Google Scholar 

  12. Khan SA (1997) Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61:442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuzma J, Nemecek-Marshall M, Pollock WH et al (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30:97–103. https://doi.org/10.1007/BF00294190

    Article  PubMed  CAS  Google Scholar 

  14. Li X-RR, Tian G-QQ, Shen H-JJ et al (2015) Metabolic engineering of Escherichia coli to produce zeaxanthin. J Ind Microbiol Biotechnol 42:627–636. https://doi.org/10.1007/s10295-014-1565-6

    Article  PubMed  CAS  Google Scholar 

  15. Lilly J, Camps M (2015) Mechanisms of theta plasmid replication. Microbiol Spectr 3:45–69. https://doi.org/10.1128/microbiolspec.PLAS-0029-2014

    Article  CAS  Google Scholar 

  16. Ma T, Zhou Y, Li X et al (2016) Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli. Biotechnol J 11:228–237. https://doi.org/10.1002/biot.201400827

    Article  PubMed  CAS  Google Scholar 

  17. Man Z-W, Rao Z-MI, Cheng Y-P et al (2014) Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed. World J Microbiol Biotechnol 30:661–667. https://doi.org/10.1007/s11274-013-1492-0

    Article  PubMed  CAS  Google Scholar 

  18. Meijer WJ, Wisman GB, Terpstra P et al (1998) Rolling-circle plasmids from Bacillus subtilis: complete nucleotide sequences and analyses of genes of pTA1015, pTA1040, pTA1050 and pTA1060, and comparisons with related plasmids from Gram-positive bacteria. FEMS Microbiol Rev 21:337–368. https://doi.org/10.1016/S0168-6445(98)00003-5

    Article  PubMed  CAS  Google Scholar 

  19. Nguyen HD, Nguyen QA, Ferreira RC et al (2005) Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 54:241–248. https://doi.org/10.1016/j.plasmid.2005.05.001

    Article  PubMed  CAS  Google Scholar 

  20. Paddon CJ, Westfall PJ, Pitera DJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532. https://doi.org/10.1038/nature12051

    Article  PubMed  CAS  Google Scholar 

  21. Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251. https://doi.org/10.1038/nprot.2010.181

    Article  PubMed  CAS  Google Scholar 

  22. Rocky-Salimi K, Hashemi M, Safari M et al (2017) Valorisation of untreated cane molasses for enhanced phytase production by Bacillus subtilis K46b and its potential role in dephytinisation. J Sci Food Agric 97:222–229. https://doi.org/10.1002/jsfa.7716

    Article  PubMed  CAS  Google Scholar 

  23. Saimmai A, Sobhon V, Maneerat S (2011) Molasses as a whole medium for biosurfactants production by Bacillus strains and their application. Appl Biochem Biotechnol 165:315–335. https://doi.org/10.1007/s12010-011-9253-8

    Article  PubMed  CAS  Google Scholar 

  24. Schumann W (2007) Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 62:137–189. https://doi.org/10.1016/S0065-2164(07)62006-1

    Article  PubMed  CAS  Google Scholar 

  25. Shao H, Cao Q, Zhao H et al (2015) Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus. J Gen Appl Microbiol 61:124–131. https://doi.org/10.2323/jgam.61.124

    Article  PubMed  CAS  Google Scholar 

  26. Sivy TL, Fall R, Rosenstiel TN (2011) Evidence of isoprenoid precursor toxicity in Bacillus subtilis. Biosci Biotechnol Biochem 75:2376–2383. https://doi.org/10.1271/bbb.110572

    Article  PubMed  CAS  Google Scholar 

  27. del Solar G, Giraldo R, Ruiz-Echevarría MJ et al (1998) Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62:434–464

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tanaka T, Ishida H, Maehara T (2005) Characterization of the replication region of plasmid pLS32 from the Natto Strain of Bacillus subtilis. J Bacteriol 187:4315–4326. https://doi.org/10.1128/JB.187.13.4315-4326.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tanaka T, Ogura M (1998) A novel Bacillus natto plasmid pLS32 capable of replication in Bacillus subtilis. FEBS Lett 422:243–246. https://doi.org/10.1016/S0014-5793(98)00015-5

    Article  PubMed  CAS  Google Scholar 

  30. Titok M, Chapuis J, Selezneva Y et al (2003) Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid 49:53–62. https://doi.org/10.1016/S0147-619X(02)00109-9

    Article  PubMed  CAS  Google Scholar 

  31. Toymentseva AA, Altenbuchner J (2019) New CRISPR-Cas9 vectors for genetic modifications of Bacillus species. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fny284

    Article  PubMed  Google Scholar 

  32. Vellanoweth RL, Rabinowitz JC (1992) The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6:1105–1114. https://doi.org/10.1111/j.1365-2958.1992.tb01548.x

    Article  PubMed  CAS  Google Scholar 

  33. Wang Y, Weng J, Waseem R et al (2012) Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res 40:e91. https://doi.org/10.1093/nar/gks248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang Z, Chen T, Ma X et al (2011) Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour Technol 102:3934–3940. https://doi.org/10.1016/j.biortech.2010.11.120

    Article  PubMed  CAS  Google Scholar 

  35. Xie W, Lv X, Ye L et al (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng 30:69–78. https://doi.org/10.1016/j.ymben.2015.04.009

    Article  PubMed  CAS  Google Scholar 

  36. Xie W, Ye L, Lv X et al (2015) Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng 28:8–18. https://doi.org/10.1016/j.ymben.2014.11.007

    Article  PubMed  CAS  Google Scholar 

  37. Xue D, Abdallah II, de Haan IEM et al (2015) Enhanced C30carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes. Appl Microbiol Biotechnol 99:5907–5915. https://doi.org/10.1007/s00253-015-6531-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Xue J, Ahring BK (2011) Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol 77:2399–2405. https://doi.org/10.1128/aem.02341-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

  40. Zhou K, Zou R, Zhang C et al (2013) Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol Bioeng 110:2556–2561. https://doi.org/10.1002/bit.24900

    Article  PubMed  CAS  Google Scholar 

  41. Zhou P, Xie W, Li A et al (2017) Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Enzyme Microb Technol 100:28–36. https://doi.org/10.1016/j.enzmictec.2017.02.006

    Article  PubMed  CAS  Google Scholar 

  42. Zhou Y, Nambou K, Wei L et al (2013) Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnol Lett 35:2137–2145. https://doi.org/10.1007/s10529-013-1317-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Maeda for providing the pHYcrtMN plasmid. Funding for this work was obtained through EuroCoRes SYNBIO (SYNMET), NWO-ALW 855.01.161, EU FP-7 grant 289540 (PROMYSE). IIA is a recipient of Erasmus Mundus Action 2, Strand 1, Fatima Al Fihri project ALFI1200161 scholarship and is on study leave from Faculty of Pharmacy, Alexandria University. HP is a recipient of Bernoulli scholarship from University of Groningen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim J. Quax.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, I.I., Xue, D., Pramastya, H. et al. A regulated synthetic operon facilitates stable overexpression of multigene terpenoid pathway in Bacillus subtilis. J Ind Microbiol Biotechnol 47, 243–249 (2020). https://doi.org/10.1007/s10295-019-02257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02257-4

Keywords

Navigation