Skip to main content
Log in

Decreased proteinase A excretion by strengthening its vacuolar sorting and weakening its constitutive secretion in Saccharomyces cerevisiae

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Proteinase A (PrA), encoded by PEP4 gene, is detrimental to beer foam stability. There are two transport pathways for the new synthesized PrA in yeast, sorting to the vacuole normally, or excreting out of the cells under stress conditions. They were designated as the Golgi-to-vacuole pathway and the constitutive secretory pathway, respectively. To reduce PrA excretion in some new way instead of its coding gene deletion, which had a negative effect on cell metabolism and beer fermentation, we modified the PrA transport based on these above two pathways. In the Golgi-to-vacuole pathway, after the verification that Vps10p is the dominant sorting receptor for PrA Golgi-to-vacuolar transportation by VPS10 deletion, VPS10 was then overexpressed. Furthermore, SEC5, encoding exocyst complexes’ central subunit (Sec5p) in the constitutive secretory pathway, was deleted. The results show that PrA activity in the broth fermented with WGV10 (VPS10 overexpressing strain) and W∆SEC5 (SEC5 deletion strain) was lowered by 76.96 and 32.39%, compared with the parental strain W303-1A, at the end of main fermentation. There are negligible changes in fermentation performance between W∆SEC5 and W303-1A, whereas, surprisingly, WGV10 had a significantly improved fermentation performance compared with W303-1A. WGV10 has an increased growth rate, resulting in higher biomass and faster fermentation speed; finally, wort fermentation is performed thoroughly. The results show that the biomass production of WGV10 is always higher than that of W∆SEC5 and W303-1A at all stages of fermentation, and that ethanol production of WGV10 is 1.41-fold higher than that of W303-1A. Obviously, VPS10 overexpression is beneficial for yeast and is a more promising method for reduction of PrA excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ammerer G, Hunter CP, Rothman JH, Saari GC, Valls LA, Stevens TH (1986) PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol Cell Biol 6:2490–2499. doi:10.1128/MCB.6.7.2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rendueles PS, Wolf DH (1988) Proteinase function in yeast: biochemical and genetic approaches to a central mechanism of post-translational control in the eukaryote cell. FEMS Microbiol Rev 54:17–46. doi:10.1111/j.1574-6968.1988.tb02706.x-i1

    Article  Google Scholar 

  3. Westphal V, Marcusson EG, Winther JR, Emr SD, van den Hazel HB (1996) Multiple pathways for vacuolar sorting of yeast proteinase A. J Biol Chem 271:11865–11870. doi:10.1074/jbc.271.20.11865

    Article  CAS  PubMed  Google Scholar 

  4. Kondo H, Yomo H, Furukubo S, Fukui N, Nakatani K, Kawasaki Y (1999) Advanced method for measuring proteinase A in beer and application to brewing. J Inst Brew 105:293–300. doi:10.1002/j.2050-0416.1999.tb00523.x

    Article  CAS  Google Scholar 

  5. Lu J, Dong J, Wu D, Chen Y, Guo X, Shi Y, Sun X, Xiao D (2012) Construction of recombinant industrial brewer’s yeast with lower diacetyl production and proteinase A activity. Eur Food Res Technol 235:951–961. doi:10.1007/s00217-012-1821-9

    Article  CAS  Google Scholar 

  6. Wang ZY, He GQ, Liu ZS, Ruan H, Chen QH, Xiong HP (2005) Purification of yeast proteinase A from fresh beer and its specificity on foam proteins. Int J Food Sci Technol 40:835–840. doi:10.1111/j.1365-2621.2005.01000.x

    Article  Google Scholar 

  7. Fukal L, Káš J, Rauch P (1986) Properties of yeast proteinases. J Inst Brew 92:357–359. doi:10.1002/j.2050-0416.1986.tb04423.x

    Article  CAS  Google Scholar 

  8. He GQ, Wang ZY, Liu ZS, Chen QH, Ruan H, Schwarz PB (2006) Relationship of proteinase activity, foam proteins, and head retention in unpasteurized beer. J Am Soc Brew Chem 64:33–38

    CAS  Google Scholar 

  9. Zhang HB, Ruan H, Li WF, Zhang W, Su ZR, He GQ, Chen QH (2011) Construction of recombinant industrial S. cerevisiae strain with barley lipid-transfer protein 1 secretion capability and lower PrA activity. Eur Food Res Technol 233:707–716. doi:10.1007/s00217-011-1559-9

    Article  CAS  Google Scholar 

  10. Cooper DJ, Stewart GG, Bryce JH (2000) Yeast proteolytic activity during high and low gravity wort fermentations and its effect on head retention. J Inst Brew 106:197–201. doi:10.1002/j.2050-0416.2000.tb00057.x

    Article  Google Scholar 

  11. Liu C, Song Q, Yin X (2014) Effect of yeast physiological indexes on proteinase A secretion detected by resonance light scattering technique. Eur Food Res Technol 239:913–921. doi:10.1007/s00217-014-2288-7

    Article  CAS  Google Scholar 

  12. Hao J, Dong J, Speers RA, Shen W, Shan L, Fan W, Li Q, Gu G, Chen J (2008) Construction of a single PEP4 allele deletion in Saccharomyces carlsbergensis and a preliminary evaluation of its brewing performance. J Inst Brew 114:322–328. doi:10.1002/j.2050-0416.2008.tb00776.x

    Article  CAS  Google Scholar 

  13. Liu XF, Wang ZY, Wang JJ, Lu Y, He XP, Zhang BR (2009) Expression of GAI gene and disruption of PEP4 gene in an industrial brewer’s yeast strain. Lett Appl Microbiol 49:117–123. doi:10.1111/j.1472-765X.2009.02627.x

    Article  PubMed  Google Scholar 

  14. Wang ZY, He GQ, Ruan H, Liu ZS, Yang LF, Zhang BR (2007) Construction of proteinase A deficient transformant of industrial brewing yeast. Eur Food Res Technol 225:831–835. doi:10.1007/s00217-006-0488-5

    Article  CAS  Google Scholar 

  15. Wang ZY, He XP, Zhang BR (2007) Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer’s yeast. Int J Food Microbiol 119:192–199. doi:10.1016/j.ijfoodmicro.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  16. Kato M, Kuzuhara Y, Maeda H, Shiraga S, Ueda M (2006) Analysis of a processing system for proteases using yeast cell surface engineering: conversion of precursor of proteinase A to active proteinase A. Appl Microbiol Biotechnol 72:1229–1237. doi:10.1007/s00253-006-0408-4

    Article  CAS  PubMed  Google Scholar 

  17. Parr CL, Keates RAB, Bryksa BC, Ogawa M, Yada RY (2007) The structure and function of Saccharomyces cerevisiae proteinase A. Yeast 24:467–480. doi:10.1002/yea.1485

    Article  CAS  PubMed  Google Scholar 

  18. Rupp S, Hirsch HH, Wolf DH (1991) Biogenesis of the yeast vacuole (lysosome). Active site mutation in the vacuolar aspartate proteinase yscA blocks maturation of vacuolar proteinases. FEBS Lett 293:62–66. doi:10.1016/0014-5793(91)81153-Y

    Article  CAS  PubMed  Google Scholar 

  19. Chen Qh, Liu XJ, Fu ML, Zhang HB (2010) Effect of PrA encoding gene-PEP4 deletion in industrial S. cerevisiae WZ65 on key enzymes in relation to the glycolytic pathway. Eur Food Res Technol 231:943–950. doi:10.1007/s00217-010-1355-y

    Article  CAS  Google Scholar 

  20. Liu XJ, Feng Y, Fu ML, Dong YC, Chen QH, Jiao YC (2011) The shock of vacuolar PrA on glycolytic flux oxidative phosphorylation and cell morphology by industrial Saccharomyces cerevisiae WZ65. Eur Food Res Technol 233:941–949. doi:10.1007/s00217-011-1586-6

    Article  CAS  Google Scholar 

  21. Bröcker C, Engelbrecht-Vandré S, Ungermann C (2010) Multisubunit tethering complexes and their role in membrane fusion. Curr Biol 20:944–952. doi:10.1016/j.cub.2010.09.015

    Article  Google Scholar 

  22. Mechler B, Müller M, Müller H, Meussdoerffer F, Wolf DH (1982) In vivo biosynthesis of the vacuolar proteinases A and B in the yeast Saccharomyces cerevisiae. J Biol Chem 257:11203–11206

    CAS  PubMed  Google Scholar 

  23. Klionsky DJ, Banta LM, Emr SD (1988) Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol Cell Biol 8:2105–2116. doi:10.1128/MCB.8.5.2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stevens T, Esmon B, Scheckman R (1982) Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell 30:439–448. doi:10.1016/0092-8674(82)90241-0

    Article  CAS  PubMed  Google Scholar 

  25. Cooper AA, Stevens TH (1996) Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 133:529–541. doi:10.1083/jcb.133.3.529

    Article  CAS  PubMed  Google Scholar 

  26. Meussdoerffer F, Tortora P, Holzer H (1980) Purification and properties of proteinase A from yeast. J Biol Chem 255:12087–12093

    CAS  PubMed  Google Scholar 

  27. Van den Hazel HB, Wolff AM, Kielland-Brandt MC, Winther JR (1997) Mechanism and ion-dependence of in vitro autoactivation of yeast proteinase A: possible implications for compartmentalized activation in vivo. J Biochem 326:339–344. doi:10.1042/bj3260339

    Article  Google Scholar 

  28. Wolff AM, Din N, Petersen JGL (1996) Vacuolar and extracellular maturation of Saccharomyces cerevisiae proteinase A. Yeast 12:823–832. doi:10.1002/(SICI)1097-0061(199607)12:9<823:AID-YEA975>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  29. Rothman JH, Hunter CP, Valls LA, Stevens TH (1986) Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. Proc Nati Acad Sci USA 83:3248–3252

    Article  CAS  Google Scholar 

  30. JØrgensen MU, Emr SD, Winther JR (1999) Ligand recognition and domain structure of Vps10p a vacuolar protein sorting receptor in Saccharomyces cerevisiae. Eur J Biochem 260:461–469. doi:10.1046/j.1432-1327.1999.00176.x

    Article  PubMed  Google Scholar 

  31. Whyte JRC, Munro S (2001) A yeast homolog of the mammalian mannose 6-phosphate receptors contributes to the sorting of vacuolar hydrolases. Curr Biol 11:1074–1078. doi:10.1016/S0960-9822(01)00273-1

    Article  CAS  PubMed  Google Scholar 

  32. Bednarek SY, Wilkins TA, Dombrowski JE, Raikhel NV (1990) A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2:1145–1155. doi:10.1105/tpc.2.12.1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stack JH, Emr SD (1993) Genetic and biochemical studies of protein sorting to the yeast vacuole. Curr Opin Cell Biol 5:641–646. doi:10.1016/0955-0674(93)90134-C

    Article  CAS  PubMed  Google Scholar 

  34. Salminen A, Novick PJ (1989) The Sec15 protein responds to the function of the GTP binding protein Sec4 to control vesicular traffic in yeast. J Cell Biol 109:1023–1036. doi:10.1083/jcb.109.3.1023

    Article  CAS  PubMed  Google Scholar 

  35. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166. doi:10.1016/S0092-8674(03)01079-1

    Article  CAS  PubMed  Google Scholar 

  36. Liu J, Guo W (2012) The exocyst complex in exocytosis and cell migration. Protoplasma 249:587–597. doi:10.1007/s00709-011-0330-1

    Article  PubMed  Google Scholar 

  37. Daniel RT, Peter N (1995) Sec6, Sec8, and Secl5 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. EMBO J 130:299–312. doi:10.1083/jcb.130.2.299

    Google Scholar 

  38. Zhu B, Cai G, Hall EO, Freeman GJ (2007) In-fusion™ assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques 43:354–359. doi:10.2144/000112536

    Article  CAS  PubMed  Google Scholar 

  39. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for cre-mediated multiple gene knockouts in budding yeast. Nucl Acid Res 30:e23. doi:10.1093/nar/30.6.e23

    Article  CAS  Google Scholar 

  40. Hsu SC, TerBush D, Abraham M, Guo W (2004) The exocyst complex in polarized exocytosis. Int Rev Cytol 233:243–265. doi:10.1016/S0074-7696(04)33006-8

    Article  CAS  PubMed  Google Scholar 

  41. Liu JL, Guo W (2012) The exocyst complex in exocytosis and cell migration. Protoplasma 249:587–597. doi:10.1007/s00709-011-0330-1

    Article  PubMed  Google Scholar 

  42. Conibear E, Stevens TH (1998) Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim Biophys Acta 1440:211–230. doi:10.1016/S0167-4889(98)00058-5

    Article  Google Scholar 

  43. Mala M, Rita OT, Tamara PM, Thomas LS (2010) Sec5 a member of the exocyst complex mediates drosophila embryo cellularization. Development 141:2773–2783. doi:10.1242/dev.048330

    Google Scholar 

  44. Wan K, Yabuki Y, Mizuta K (2015) Roles of Ebp2 and ribosomal protein L36 in ribosome biogenesis in Saccharomyces cerevisiae. Curr Genet 61:31–41. doi:10.1007/s00294-014-0442-1

    Article  CAS  PubMed  Google Scholar 

  45. Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753. doi:10.1128/AEM.66.2.744-753.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The current study was financially supported by the program for the National Natural Science Foundation of China (No. 31271916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Song, L., Han, Y. et al. Decreased proteinase A excretion by strengthening its vacuolar sorting and weakening its constitutive secretion in Saccharomyces cerevisiae . J Ind Microbiol Biotechnol 44, 149–159 (2017). https://doi.org/10.1007/s10295-016-1868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1868-x

Keywords

Navigation