Skip to main content
Log in

The exocyst complex in exocytosis and cell migration

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Exocytosis is a fundamental membrane trafficking event in eukaryotic cells in which membrane proteins or lipids are incorporated into the plasma membrane and vesicle contents are secreted to the exterior of the cell. The exocyst, an evolutionarily conserved octameric protein complex, plays a crucial role in the targeting of secretory vesicles to the plasma membrane during exocytosis. The exocyst has been shown to be involved in diverse cellular processes requiring polarized exocytosis such as yeast budding, epithelial polarity establishment, and neurite outgrowth. Recently, the exocyst has also been implicated in cell migration through mechanisms independent of its role in exocytosis. In this review, we will first summarize our knowledge on the exocyst complex at a molecular and structural level. Then, we will discuss the specific functions of the exocyst in exocytosis in various cell types. Finally, we will review the emerging roles of the exocyst during cell migration and tumor cell invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aalto MK, Ronne H, Keranen S (1993) Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J 12:4095–4104

    PubMed  CAS  Google Scholar 

  • Abe T, Kato M, Miki H, Takenawa T, Endo T (2003) Small GTPase TC10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. J Cell Sci 116:155–168

    Article  PubMed  CAS  Google Scholar 

  • Baek K, Knodler A, Lee SH, Zhang X, Orlando K, Zhang J, Foskett TJ, Guo W, Dominguez R (2010) Structure-function study of the N-terminal domain of exocyst subunit Sec3. J Biol Chem 285:10424–10433

    Article  PubMed  CAS  Google Scholar 

  • Beronja S, Laprise P, Papoulas O, Pellikka M, Sisson J, Tepass U (2005) Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells. J Cell Biol 169:635–646

    Article  PubMed  CAS  Google Scholar 

  • Boeckeler K, Rosse C, Howell M, Parker PJ (2010) Manipulating signal delivery—plasma-membrane ERK activation in aPKC-dependent migration. J Cell Sci 123:2725–2732

    Article  PubMed  CAS  Google Scholar 

  • Brown MD, Sacks DB (2006) IQGAP1 in cellular signaling: bridging the GAP. Trends Cell Biol 16:242–249

    Article  PubMed  CAS  Google Scholar 

  • Brown DL, Heimann K, Lock J, Kjer-Nielsen L, van Vliet C, Stow JL, Gleeson PA (2001) The GRIP domain is a specific targeting sequence for a population of trans-Golgi network derived tubulo-vesicular carriers. Traffic 2:336–344

    Article  PubMed  CAS  Google Scholar 

  • Bryant DM, Datta A, Rodríguez-Fraticelli AE, Peränen J, Martín-Belmonte F, Mostov KE (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12(11):1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Brymora A, Valova VA, Larsen MR, Roufogalis BD, Robinson PJ (2001) The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J Biol Chem 276:29792–29797

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh LF, Chen X, Richardson BC, Ungar D, Pelczer I, Rizo J, Hughson FM (2007) Structural analysis of conserved oligomeric Golgi complex subunit 2. J Biol Chem 282:23418–23426

    Article  PubMed  CAS  Google Scholar 

  • Chen XW, Leto D, Xiao J, Goss J, Wang Q, Shavit JA, Xiong T, Yu G, Ginsburg D, Toomre D, Xu Z, Saltiel AR (2011) Exocyst function is regulated by effector phosphorylation. Nat Cell Biol 13(5):580–588

    Article  PubMed  CAS  Google Scholar 

  • Cole RA, Synek L, Zarsky V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138:2005–2018

    Article  PubMed  CAS  Google Scholar 

  • Das A, Guo W (2011) Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond. Trends Cell Biol 21(7):383–386

    Article  PubMed  CAS  Google Scholar 

  • Dong G, Hutagalung AH, Fu C, Novick P, Reinisch KM (2005) The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat Struct Mol Biol 12:1094–1100

    Article  PubMed  CAS  Google Scholar 

  • Dupraz S, Grassi D, Bernis ME, Sosa L, Bisbal M, Gastaldi L, Jausoro I, Caceres A, Pfenninger KH, Quiroga S (2009) The TC10–Exo70 complex is essential for membrane expansion and axonal specification in developing neurons. J Neurosci 29:13292–13301

    Article  PubMed  CAS  Google Scholar 

  • Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Zarsky V (2003) The exocyst complex in plants. Cell Biol Int 27(3):199–201

    Article  PubMed  CAS  Google Scholar 

  • Ewart MA, Clarke M, Kane S, Chamberlain LH, Gould GW (2005) Evidence for a role of the exocyst in insulin-stimulated Glut4 trafficking in 3 T3-L1 adipocytes. J Biol Chem 280:3812–3816

    Article  PubMed  CAS  Google Scholar 

  • Feig LA (2003) Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol 13:419–425

    Article  PubMed  CAS  Google Scholar 

  • Fukai S, Matern HT, Jagath JR, Scheller RH, Brunger AT (2003) Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. EMBO J 22:3267–3278

    Article  PubMed  CAS  Google Scholar 

  • Gerges NZ, Backos DS, Rupasinghe CN, Spaller MR, Esteban JA (2006) Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO J 25:1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726

    Article  PubMed  CAS  Google Scholar 

  • Govindan B, Bowser R, Novick P (1995) The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 128:1055–1068

    Article  PubMed  CAS  Google Scholar 

  • Grindstaff KK, Yeaman C, Anandasabapathy N, Hsu SC, Rodriguez-Boulan E, Scheller RH, Nelson WJ (1998) Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93:731–740

    Article  PubMed  CAS  Google Scholar 

  • Grote E, Carr CM, Novick PJ (2000) Ordering the final events in yeast exocytosis. J Cell Biol 151:439–452

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Roth D, Walch-Solimena C, Novick P (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Sacher M, Barrowman J, Ferro-Novick S, Novick P (2000) Protein complexes in transport vesicle targeting. Trends Cell Biol 10:251–255

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Tamanoi F, Novick P (2001) Spatial regulation of the exocyst complex by Rho1 GTPase. Nat Cell Biol 3(4):353–360

    Article  PubMed  CAS  Google Scholar 

  • Hala M, Cole R, Synek L, Drdova E, Pecenkova T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler JE, Zarsky V (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20:1330–1345

    Article  PubMed  CAS  Google Scholar 

  • Hamburger ZA, Hamburger AE, West AP Jr, Weis WI (2006) Crystal structure of the S.cerevisiae exocyst component Exo70p. J Mol Biol 356:9–21

    Article  PubMed  CAS  Google Scholar 

  • Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H, Ito M, Watarai H, Hazelett CC, Yeaman C, Ohno H (2009) M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 11:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Hazuka CD, Foletti DL, Hsu SC, Kee Y, Hopf FW, Scheller RH (1999) The sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains. J Neurosci 19:1324–1334

    PubMed  CAS  Google Scholar 

  • He B, Guo W (2009) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21:537–542

    Article  PubMed  CAS  Google Scholar 

  • Hsu SC, Ting AE, Hazuka CD, Davanger S, Kenny JW, Kee Y, Scheller RH (1996) The mammalian brain rsec6/8 complex. Neuron 17:1209–1219

    Article  PubMed  CAS  Google Scholar 

  • Hsu SC, Hazuka CD, Roth R, Foletti D, Heuser J, Scheller RH (1998) Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20:1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Hsu SC, Hazuka CD, Foletti DL, Scheller RH (1999) Targeting vesicles to specific sites on the plasma membrane: the role of the sec6/8 complex. Trends Cell Biol 9:150–153

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Chang L, Hwang J, Chiang SH, Saltiel AR (2003) The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature 422:629–633

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Chiang SH, Chang L, Chen XW, Saltiel AR (2006) Compartmentalization of the exocyst complex in lipid rafts controls Glut4 vesicle tethering. Mol Biol Cell 17:2303–2311

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Junutula JR, Matern HT, Ervin KE, Scheller RH, Brunger AT (2005) Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J 24:2064–2074

    Article  PubMed  CAS  Google Scholar 

  • Kawase K, Nakamura T, Takaya A, Aoki K, Namikawa K, Kiyama H, Inagaki S, Takemoto H, Saltiel AR, Matsuda M (2006) GTP hydrolysis by the Rho family GTPase TC10 promotes exocytic vesicle fusion. Dev Cell 11:411–421

    Article  PubMed  CAS  Google Scholar 

  • Langevin J, Morgan MJ, Sibarita JB, Aresta S, Murthy M, Schwarz T, Camonis J, Bellaiche Y (2005) Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane. Dev Cell 9:365–376

    Article  PubMed  CAS  Google Scholar 

  • LeClaire LL 3rd, Baumgartner M, Iwasa JH, Mullins RD, Barber DL (2008) Phosphorylation of the Arp2/3 complex is necessary to nucleate actin filaments. J Cell Biol 182:647–654

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA (2004) Pleckstrin homology domains: not just for phosphoinositides. Biochem Soc Trans 32:707–711

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zuo X, Yue P, Guo W (2007) Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol Biol Cell 18:4483–4492

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Yue P, Artym VV, Mueller SC, Guo W (2009) The role of the exocyst in matrix metalloproteinase secretion and actin dynamics during tumor cell invadopodia formation. Mol Biol Cell 20:3763–3771

    Article  PubMed  CAS  Google Scholar 

  • Lizunov VA, Lisinski I, Stenkula K, Zimmerberg J, Cushman SW (2009) Insulin regulates fusion of GLUT4 vesicles independent of Exo70-mediated tethering. J Biol Chem 284:7914–7919

    Article  PubMed  CAS  Google Scholar 

  • Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P (2007) Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176:953–964

    Article  PubMed  CAS  Google Scholar 

  • McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596

    Article  PubMed  CAS  Google Scholar 

  • Mendoza MC, Er EE, Zhang W, Ballif BA, Elliott HL, Danuser G, Blenis J (2011) ERK-MAPK drives lamellipodia protrusion by activating the WAVE2 regulatory complex. Mol Cell 41:661–671

    Article  PubMed  CAS  Google Scholar 

  • Moore BA, Robinson HH, Xu Z (2007) The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst. J Mol Biol 371:410–421

    Article  PubMed  CAS  Google Scholar 

  • Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA (2002) The exocyst is a Ral effector complex. Nat Cell Biol 4:66–72

    Article  PubMed  CAS  Google Scholar 

  • Mott HR, Nietlispach D, Hopkins LJ, Mirey G, Camonis JH, Owen D (2003) Structure of the GTPase-binding domain of Sec5 and elucidation of its Ral binding site. J Biol Chem 278:17053–17059

    Article  PubMed  CAS  Google Scholar 

  • Munson M, Novick P (2006) The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol 13:577–581

    Article  PubMed  CAS  Google Scholar 

  • Murthy M, Garza D, Scheller RH, Schwarz TL (2003) Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37:433–447

    Article  PubMed  CAS  Google Scholar 

  • Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K (2005) IQGAP1: a key regulator of adhesion and migration. J Cell Sci 118:2085–2092

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Guo W (2002) Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol 12:247–249

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Schekman R (1979) Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 76:1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215

    Article  PubMed  CAS  Google Scholar 

  • Oztan A, Silvis M, Weisz OA, Bradbury NA, Hsu SC, Goldenring JR, Yeaman C, Apodaca G (2007) Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol Biol Cell 18:3978–3992

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer SR (1999) Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol 1:E17–E22

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  PubMed  CAS  Google Scholar 

  • Polzin A, Shipitsin M, Goi T, Feig LA, Turner TJ (2002) Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles. Mol Cell Biol 22:1714–1722

    Article  PubMed  CAS  Google Scholar 

  • Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, Rosse C, Camonis J, Chavrier P (2003) ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J Cell Biol 163:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Riefler GM, Balasingam G, Lucas KG, Wang S, Hsu SC, Firestein BL (2003) Exocyst complex subunit sec8 binds to postsynaptic density protein-95 (PSD-95): a novel interaction regulated by cypin (cytosolic PSD-95 interactor). Biochem J 373:49–55

    Article  PubMed  CAS  Google Scholar 

  • Rosse C, Hatzoglou A, Parrini MC, White MA, Chavrier P, Camonis J (2006) RalB mobilizes the exocyst to drive cell migration. Mol Cell Biol 26:727–734

    Article  PubMed  CAS  Google Scholar 

  • Rosse C, Formstecher E, Boeckeler K, Zhao Y, Kremerskothen J, White MD, Camonis JH, Parker PJ (2009) An aPKC-exocyst complex controls paxillin phosphorylation and migration through localised JNK1 activation. PLoS Biol 7:e1000235

    Article  PubMed  Google Scholar 

  • Sakurai-Yageta M, Recchi C, Le Dez G, Sibarita JB, Daviet L, Camonis J, D’Souza-Schorey C, Chavrier P (2008) The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol 181:985–998

    Article  PubMed  CAS  Google Scholar 

  • Sans N, Prybylowski K, Petralia RS, Chang K, Wang YX, Racca C, Vicini S, Wenthold RJ (2003) NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5:520–530

    Article  PubMed  CAS  Google Scholar 

  • Scita G, Confalonieri S, Lappalainen P, Suetsugu S (2008) IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18:52–60

    Article  PubMed  CAS  Google Scholar 

  • Shipitsin M, Feig LA (2004) RalA but not RalB enhances polarized delivery of membrane proteins to the basolateral surface of epithelial cells. Mol Cell Biol 24:5746–5756

    Article  PubMed  CAS  Google Scholar 

  • Sivaram MV, Furgason ML, Brewer DN, Munson M (2006) The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat Struct Mol Biol 13:555–556

    Article  PubMed  CAS  Google Scholar 

  • Spiczka KS, Yeaman C (2008) Ral-regulated interaction between Sec5 and paxillin targets Exocyst to focal complexes during cell migration. J Cell Sci 121:2880–2891

    Article  PubMed  CAS  Google Scholar 

  • Sugihara K, Asano S, Tanaka K, Iwamatsu A, Okawa K, Ohta Y (2002) The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 4:73–78

    Article  PubMed  CAS  Google Scholar 

  • Svitkina T (2007) Electron microscopic analysis of the leading edge in migrating cells. Methods Cell Biol 79:295–319

    Article  PubMed  CAS  Google Scholar 

  • Synek L, Schlager N, Elias M, Quentin M, Hauser MT, Zarsky V (2006) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J 48:54–72

    Article  PubMed  CAS  Google Scholar 

  • TerBush DR, Novick P (1995) Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J Cell Biol 130:299–312

    Article  PubMed  CAS  Google Scholar 

  • TerBush DR, Maurice T, Roth D, Novick P (1996) The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15:6483–6494

    PubMed  CAS  Google Scholar 

  • Terbush DR, Guo W, Dunkelbarger S, Novick P (2001) Purification and characterization of yeast exocyst complex. Methods Enzymol 329:100–110

    Article  PubMed  CAS  Google Scholar 

  • Ting AE, Hazuka CD, Hsu SC, Kirk MD, Bean AJ, Scheller RH (1995) rSec6 and rSec8, mammalian homologs of yeast proteins essential for secretion. Proc Natl Acad Sci USA 92:9613–9617

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi T, Ravier MA, Xie H, Ewart MA, Gould GW, Baldwin SA, Rutter GA (2005) Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis. J Biol Chem 280:25565–25570

    Article  PubMed  CAS  Google Scholar 

  • Vega IE, Hsu SC (2001) The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J Neurosci 21:3839–3848

    PubMed  CAS  Google Scholar 

  • Walch-Solimena C, Collins RN, Novick PJ (1997) Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J Cell Biol 137:1495–1509

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Liu Y, Adamson CL, Valdez G, Guo W, Hsu SC (2004) The mammalian exocyst, a complex required for exocytosis, inhibits tubulin polymerization. J Biol Chem 279:35958–35966

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, Wang X, Robinson DG, Jiang L (2010) EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22(12):4009–4030

    Article  PubMed  CAS  Google Scholar 

  • Waters MG, Hughson FM (2000) Membrane tethering and fusion in the secretory and endocytic pathways. Traffic 1:588–597

    Article  PubMed  CAS  Google Scholar 

  • Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol 138:1637–1643

    Article  PubMed  CAS  Google Scholar 

  • Whyte JR, Munro S (2001) The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1:527–537

    Article  PubMed  CAS  Google Scholar 

  • Whyte JR, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115:2627–2637

    PubMed  CAS  Google Scholar 

  • Wu S, Mehta SQ, Pichaud F, Bellen HJ, Quiocho FA (2005) Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 12:879–885

    Article  PubMed  CAS  Google Scholar 

  • Yamashita M, Kurokawa K, Sato Y, Yamagata A, Mimura H, Yoshikawa A, Sato K, Nakano A, Fukai S (2010) Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Nat Struct Mol Biol 17:180–186

    Article  PubMed  CAS  Google Scholar 

  • Yoshizaki H, Mochizuki N, Gotoh Y, Matsuda M (2007) Akt-PDK1 complex mediates epidermal growth factor-induced membrane protrusion through Ral activation. Mol Biol Cell 18:119–128

    Article  PubMed  CAS  Google Scholar 

  • Zarsky V, Cvrckova F, Potocky M, Hala M (2009) Exocytosis and cell polarity in plants—exocyst and recycling domains. New Phytol 183:255–272

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Bi E, Novick P, Du L, Kozminski KG, Lipschutz JH, Guo W (2001) Cdc42 interacts with the exocyst and regulates polarized secretion. J Biol Chem 276:46745–46750

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Ellis S, Sriratana A, Mitchell CA, Rowe T (2004) Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 279:43027–43034

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Orlando K, He B, Xi F, Zhang J, Zajac A, Guo W (2008) Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J Cell Biol 180:145–158

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Guo W (2009) Sec-ure nanotubes with RalA and exocyst. Nat Cell Biol 11(12):1396–1397

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Pykalainen A, Lappalainen P (2011) I-BAR domain proteins: linking actin and plasma membrane dynamics. Curr Opin Cell Biol 23:14–21

    Article  PubMed  CAS  Google Scholar 

  • Zuo X, Zhang J, Zhang Y, Hsu SC, Zhou D, Guo W (2006) Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat Cell Biol 8:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Zuo X, Guo W, Lipschutz JH (2009) The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol Biol Cell 20:2522–2529

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. John Schmidt in the Guo lab for thorough reading of the manuscript prior to submission. The work in Wei Guo’s laboratory has been supported by the National Institutes of Health, Pew Scholars Program in Biomedical Sciences and American Heart Association.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guo.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Guo, W. The exocyst complex in exocytosis and cell migration. Protoplasma 249, 587–597 (2012). https://doi.org/10.1007/s00709-011-0330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0330-1

Keywords

Navigation