Skip to main content
Log in

A high-throughput screening strategy for accurate quantification of menaquinone based on fluorescence-activated cell sorting

  • Biotechnology Methods
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

To enhance the screening efficiency and accuracy of a high-yield menaquinone (vitamin K2, MK) bacterial strain, a novel, quantitative method by fluorescence-activated cell sorting (FACS) was developed. The staining technique was optimized to maximize the differences in fluorescence signals between spontaneous and MK-accumulating cells. The fluorescence carrier rhodamine 123 (Rh123), with its ability to reflect membrane potential, proved to be an appropriate fluorescent dye to connect the MK content with fluorescence signal quantitatively. To promote adequate access of the fluorescent molecule to the target and maintain higher cell survival rates, staining and incubation conditions were optimized. The results showed that 10 % sucrose facilitated uptake of Rh123, while maintaining a certain level of cell viability. The pre-treatment of cells with MgCl2 before staining with Rh123 also improved cell viability. Using FACS, 50 thousands cells can easily be assayed in less than 1 h. The optimized staining protocol yielded a linear response for the mean fluorescence against high performance liquid chromatography-measured MK content. We have developed a novel and useful staining protocol in the high-throughput evaluation of Flavobacterium sp. mutant libraries, using FACS to identify mutants with increased MK-accumulating properties. This study also provides reference for the screening of other industrial microbial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bhalerao S, Clandinin TR (2012) Vitamin K2 takes charge. Science 336:1241–1242

    Article  CAS  PubMed  Google Scholar 

  2. Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boukaert HJ, Said AH (1960) Fracture healing by vitamin K. Nature 19:849

    Article  Google Scholar 

  4. Bradley J, Gill J, Bertelli F, Letafat S, Corbau R, Hayter P, Harrison P, Tee A, Keighley W, Perros M, Ciaramella G, Sewing A, Williams C (2004) Development and automation of a 384-well cell fusion assay to identify inhibitors of CCR5/CD4-mediated HIV virus entry. J Biomol Screen 9:516–524

    Article  CAS  PubMed  Google Scholar 

  5. Brandish PE, Chiu CS, Schneeweis J, Brandon N, Leech CL, Kornienko O, Scolnick EM, Strulovici B, Zheng W (2006) A cell based ultra-high-throughput screening assay for identifying inhibitors of D-amino acid oxidase. J Biomol Screen 11:481–487

    Article  CAS  PubMed  Google Scholar 

  6. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77:41–47

    Article  CAS  Google Scholar 

  7. Cooksey KE, Guckert JB, Williams S, Callis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Meth 6:333–345

    Article  CAS  Google Scholar 

  8. Das A, Hugenholtz J, Halbeek HV, Ljungdahl LG (1989) Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum. J Bacteriol 171:5823–5829

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534–2544

    Article  CAS  Google Scholar 

  10. Fiorini R, Ragni L, Ambrosi S, Littarru GP, Gratton E, Hazlett T (2008) Fluorescence studies of the interactions of ubiquinol-10 with liposomes. Photochem Photobiol 84(1):209–214

    CAS  PubMed  Google Scholar 

  11. Givan AL (2011) Flow cytometry: an introduction. Methods Mol Biol 699:1–29

    Article  CAS  PubMed  Google Scholar 

  12. Hisataka T, Takashi S, Chiranun D, Tani Y (1989) Menaquinone-4 production by a sulfonamide-resistant mutant of flavobacterium sp. 238-7. Agric Biol Chem 53:3017–3023

    Google Scholar 

  13. Ishida Y (2008) Vitamin K2. Clin Calcium 18:1476–1482

    CAS  PubMed  Google Scholar 

  14. Kacmar J, Carlson R, Balogh SJ, Srienc F (2005) Staining and quantification of poly-3-hydroxybutyrate in Saccharomyces cerevisiae and Cupriavidus necator cell populations using automated flow cytometry. Cytometry 69:27–35

    Google Scholar 

  15. Kaprelyants AS, Kell DB (1992) Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry. J Appl Bacteriol 72:410–422

    Article  CAS  Google Scholar 

  16. Kurosu M, Begari E (2010) Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules 15:1531–1553

    Article  CAS  PubMed  Google Scholar 

  17. Lenaz G, Fato R, Formiggini G, Genova ML (2007) The role of Coenzyme Q in mitochondrial electron transport. Agric Biol Chem 7:8–33

    Google Scholar 

  18. Liu Y, Wang L, Zheng ZM, Qiu HW, Wang P, Zhao GH, Gong GH, Song JY, Dai J (2015) Vitamin K2 production using Escherichia. sp mutant obtained by ion beam implantation induction. Plasma Sci Technol 17:159–166

    Article  CAS  Google Scholar 

  19. Liu Y, Zheng ZM, Qiu HW, Zhao GH, Wang P, Liu H, Wang L, Li ZM, Wu HF, Liu HX, Tan M (2014) Surfactant supplementation to enhance the production of Vitamin K2 metabolites in shake flask cultures using Escherichia sp. mutant FM3-1709. Food Technol Biotech 52:269–275

    CAS  Google Scholar 

  20. Mattanovich D, Borth N (2006) Applications of cell sorting in biotechnology. Microb Cell Fact 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakagawa K, Hirota Y, Sawada N, Yuge N, Watanabe M, Uchino Y, Okuda N, Shimomura Y, Suhara Y, Okano T (2010) Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468:117–122

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  23. Sato T, Yamada Y, Ohtani Y, Mitsui N, Murasawa H, Araki S (2001) Efficient production of menaquinone (vitamin K2) by a menadione-resistant mutant of Bacillus subtilis. J Ind Microbiol Biotechnol 26:115–120

    Article  CAS  PubMed  Google Scholar 

  24. Scaduto RC, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shibayama-Imazu T, Sonoda I, Sakairi S, Aiuchi T, Ann WW, Nakajo S, Itabe H, Kazuyasu Nakaya (2006) Production of superoxide and dissipation of mitochondrial transmembrane potential by vitamin K2 trigger apoptosis in human ovarian cancer TYK-nu cells. Apoptosis 11:1535–1543

    Article  CAS  PubMed  Google Scholar 

  26. Shapiro HM (1990) Flow cytometry in laboratory microbiology: new directions. Am Soc Microb News 56:584–588

  27. Shapiro HM (2004) Practical flow cytometry, 4th edn. Wiley-Liss, NY

    Google Scholar 

  28. Tani Y, Asahi S, Yamada H (1984) Vitamin K2 (menaquinone): screening of producing microorganism and production by Flavobacterium meningosepticum. J Ferment Technol 62:321–327

    CAS  Google Scholar 

  29. Tan J, Chu J, Hao YY, Wang YH, Yao SC, Zhuang YP, Zhang SL (2013) A high-throughput screening strategy for accurate quantification of erythromycin. J Taiwan Inst Chem 44:538–544

    Article  CAS  Google Scholar 

  30. Tsuchido T, Aoki I, Takano M (1989) Interaction of the fluorescent dye-N-Phenylnaphthylamine with Escherichia coli cells during heat stress and recovery from heat stress. J Gen Microbiol 135:1941–1947

    CAS  PubMed  Google Scholar 

  31. Tyo KE, Zhou H, Stephanopoulos GN (2006) High-Throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. strain PCC6803. Appl Environ Microb 72:3412–3417

    Article  CAS  Google Scholar 

  32. Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, Meensel SV, Schaap O, Strooper BD, Meganathan R, Morais VA, Verstreken P (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336:1306–1310

    Article  CAS  PubMed  Google Scholar 

  33. Wunder F, Stasch JP, Hutter J, Alonso-Alija C, Hüser J, Lohrmann E (2005) A cell-based cGMP assay useful for ultra-high-throughput screening and identification of modulators of the nitric oxide/cGMP pathway. Anal Biochem 339:104–112

    Article  CAS  PubMed  Google Scholar 

  34. Yang G, Rich JR, Gilbert M, Wakarchuk WW, Feng Y, Withers SG (2010) Fluorescence activated cell sorting as a general ultra-high-throughput screening method for directed evolution of glycosyltransferases. J Am Chem Soc 132:10570–10577

    Article  CAS  PubMed  Google Scholar 

  35. Yoshiki T, Naoki S (1987) Menaquinone-4 production by a mutant of flavobacterium sp. 238-7. Agric Biol Chem 51:2409–2415

    Article  Google Scholar 

  36. Youshiki T, Satoru A, Hideaki Y (1985) Production of menaquinone (vitamin K2)-5 by a hydroxynaphthoate-resistant mutant derived from flavobacterium meningosepticum, a menaquinone-6 producer. Agric Biol Chem 49:111–115

    Google Scholar 

  37. Yoshiki T, Satoru A, Hideaki Y (1986) Menaquinone (vitamin K2)-6 production by mutant of flavobacterium meningosepticum. J Nutr Sci Vitaminol 32:137–145

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the National High-tech R&D Program (No. 2014AA021704), the National Nature Science Foundation of China (No. 31471615, 31501465), Anhui Provincial Nature Science Foundation (No. 1608085QC54) and Anhui higher education exchange program for young talents (No. gxfxZD2016109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-lian Xue or Zhi-ming Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xue, Zl., Chen, Sp. et al. A high-throughput screening strategy for accurate quantification of menaquinone based on fluorescence-activated cell sorting. J Ind Microbiol Biotechnol 43, 751–760 (2016). https://doi.org/10.1007/s10295-016-1757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1757-3

Keywords

Navigation