Skip to main content
Log in

Production of superoxide and dissipation of mitochondrial transmembrane potential by vitamin K2 trigger apoptosis in human ovarian cancer TYK-nu cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We reported previously that vitamin K2 selectively induces apoptosis in human ovary cancer cells (TYK-nu cells) and pancreatic cancer cells (MIA PaCa-2 cells) through a mitochondrion-dependent pathway. In the present study, we examined the details of the mechanism of vitamin K2-induced apoptosis in TYK-nu cells. We found that superoxide (O2 •−) was produced by TYK-nu cells between 2 and 3 days after the start of treatment with vitamin K2, whereas it was produced within 30 min after the start of treatment with geranylgeraniol. The vitamin K2-induced apoptosis was inhibited by anti-oxidants, such as α-tocopherol, Tiron and N-acetyl-L-cysteine (NAC). Furthermore, both the production of superoxide and the induction of apoptosis by vitamin K2 were inhibited almost completely by cycloheximide, an inhibitor of protein synthesis, suggesting that the synthesis of enzymes for the production of superoxide might be required for these processes. In parallel with the production of superoxide, the mitochondrial transmembrane potential, as measured by staining with Mitotracker Red CMXRos, dissipated during treatment of TYK-nu cells with vitamin K2 for 3 days. The vitamin K2-induced depolarization of mitochondrial membranes was completely inhibited by α-tocopherol and, to a lesser extent, by Tiron and NAC. Since α-tocopherol reacts with oxygen radicals, such as superoxide, within the hydrophobic environment of the mitochondrial membrane, we postulate that vitamin K2-induced oxidative stress in mitochondria might damage mitochondrial membranes, with subsequent release of cytochrome c, the activation of procaspase 3 and, eventually, apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conly JM, Stein K (1992) The production of menaquinones (vitamin K2) by intestinal bacteria and their role in maintaining coagulation homeostasis. Prog Food Nutr Sci 16:307–343

    PubMed  CAS  Google Scholar 

  2. Orimo H, Shiraki M, Fujita T, Inoue T, Kushida K (1992) Clinical evaluation of menatetrenone in the treatment of involutional osteoporosis—a double-blind multicenter comparative study with 1-hydroxy vitamin D3. J Bone Miner Res 7:S122–S128

    Article  Google Scholar 

  3. Shiraki M, Shiraki Y, Aoki C, Miura M (2000) Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 15:515–521

    Article  PubMed  CAS  Google Scholar 

  4. Sakai I, Hashimoto S, Yoda M et al (1994) Novel role of vitamin K2: a potent inducer of differentiation of various human myeloid leukemia cell lines. Biochem Biophys Res Commun 205:1305–1310

    Article  PubMed  CAS  Google Scholar 

  5. Kameda T, Ishikawa H, Tsutsui T (1995) Detection and characterization of apoptosis in osteoclasts in vitro. Biochem Biophys Res Commun 207:735–760

    Article  Google Scholar 

  6. Yaguchi M, Miyazawa K, Katagiri T et al (1997) Vitamin K2 and its derivatives induce apoptosis in leukemia cells and enhance the effect of all-trans retinoic acid. Leukemia 11:779–787

    Article  PubMed  CAS  Google Scholar 

  7. Shibayama-Imazu T, Sakairi S, Watanabe A et al (2003) Vitamin K2 selectively induced apoptosis in ovarian TYK-nu and pancreatic MIA Paca-2 cells out of eight solid tumor cell lines through a mechanism different from geranylgeraniol. J Cancer Res Clin Oncol 129:1–11

    Article  PubMed  CAS  Google Scholar 

  8. Scarlett LJ, Murply MP (1997) Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS Lett 418:282–286

    Article  PubMed  CAS  Google Scholar 

  9. Narita M, Shimizu S, Ito T et al (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Pro Natl Acad USA 95:14681–14686

    Article  CAS  Google Scholar 

  10. Miyazawa K, Yaguchi M, Funato K et al (2001) Apoptosis/ differentiation-inducing effects of vitamin K2 on HL-60 cells: dichotomous nature of vitamin K2 in leukemia cells. Leukemia 15:1111–1117

    Article  PubMed  CAS  Google Scholar 

  11. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (ΔΨ m) in apoptosis; an update. Apoptosis 8:115–128

    Article  PubMed  CAS  Google Scholar 

  12. Greenlund LTS, Deckwerth TL, Johnson EMJ (1995) Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14:303–314

    Article  PubMed  CAS  Google Scholar 

  13. Chen Y-C, Lin-Shiau S-Y, Lin J-K (1998) Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177:324–333

    Article  PubMed  CAS  Google Scholar 

  14. Jones BE, Lo CR, Liu H et al (2000) Role of caspases and NF-kB signaling in hydrogen peroxide- and superoxide-induced hepatocyte apoptosis. Am J Physiol Gastrintest Liver Physiol 278:G693–G699

    CAS  Google Scholar 

  15. Iwama K, Nakajo S, Aiuchi T, Nakaya K (2001) Apoptosis induced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2+-dependent production of superoxide. Int J Cancer 92:518–526

    Article  PubMed  CAS  Google Scholar 

  16. Milner AE, Wang H, Gregory CD (1996) Analysis of apoptosis by flow cytometry. In: Al-Rubeai M, Emery AN (eds) Flow cytometry; Applications in cell culture. Marcel Dekker, New York, pp 193–209

    Google Scholar 

  17. Poot M, Zhang YZ, Krmer JA et al (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44:1363–1372

    PubMed  CAS  Google Scholar 

  18. Tadano K, Yuzuriha T, Sato T et al (1989) Identification of menaquinone-4 metabolites in the rat. J Pharmacobiodyn 12:640–645

    PubMed  CAS  Google Scholar 

  19. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 19:3–8

    Article  Google Scholar 

  20. Moldovan L, Moldovan NI (2004) Oxygen free radicals and redox biology of organelles. Histochem Cell Biol 122:395–412

    Article  PubMed  CAS  Google Scholar 

  21. Cross AR (1990) Inhibitors of the leukocyte superoxide generating oxidase: mechanisms of action and methods for their elucidation. Free Radic Biol Med 8:71–93

    Article  PubMed  CAS  Google Scholar 

  22. Kojima S, Nomura T, Icho T et al (1990) Inhibitory effect of neoprotein on NADPH-dependent superoxide-generating oxidase of rat perioneal macrophages. FEBS Lett 329:125–128

    Article  Google Scholar 

  23. Massey V, Komai H, Palmer G, Elion GB (1970) On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem 245:2837–2844

    PubMed  CAS  Google Scholar 

  24. De Bleser PJ, Xu G, Rombouts K, Rogiers V, Geerts A (1999) Glutathione levels discriminate between oxidative stress and transforming growth factor-β signaling in activated rat hepatic stellate cells. J Biol Chem 48:33881–33887

    Article  Google Scholar 

  25. Halliwell B, Gutteridge JMC (1998) Antioxidant defences. In: free radicals in biology and medicine, 3rd edn. Oxford Univ Press, Oxford, pp 208–219

    Google Scholar 

  26. Pagano PJ, Tornheim K, Cohen RA (1993) Superoxide anion production by rabbit the thoracic aorta: effect of endothelium-derived nitric oxide. Am J Physiol 265:H707–H712

    PubMed  CAS  Google Scholar 

  27. Munzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG (1995) Evidence for enhanced vascular superoxide anion production in nitrate tolerance: a novel mechanism underlying tolerance and cross tolerance. J Clin Invest 95:187–194

    Article  PubMed  CAS  Google Scholar 

  28. Meister SJ, Anderson ME (1983) Glutathione. Ann. Rev. Biochem. 52:711–760

    Article  PubMed  CAS  Google Scholar 

  29. Yanase N, Ohshima K, Ikegami H, Mizuguchi J (2000) cytochrome c release, mitochondrial membrane depolarization, caspase-3 activation, and Bax-alpha cleavage during IFN-alpha-induced apoptosis in Daudi B lymphoma cells. J Interferon Cytokine Res 20:1121–1129

    Article  PubMed  CAS  Google Scholar 

  30. Hatai T, Matsuzawa A, Inoshita S et al (2000) Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem 275:26576–26581

    Article  PubMed  CAS  Google Scholar 

  31. He J, Xiao Y, Casiano CA, Zhang L (2000) Role of mitochondrial cytochrome c in cocaine-induced apoptosis in coronary artery endothelial cells. J Phrmacol Exp Ther 295:896–903

    CAS  Google Scholar 

  32. Masuda Y, Nakaya M, Aiuchi T et al (2000) The mechanism of geranylgeraniol-induced apoptosis involves activation, by a caspase-3-like protease, of a c-jun N-terminal kinase signaling cascade and differs from mechanisms of apoptosis induced by conventional chemotherapeutic drugs. Leuk Res 24:937–950

    Article  PubMed  CAS  Google Scholar 

  33. Halliwell B, Gutteridge JMC (1998) Oxygen is a toxic gas—an introduction to oxygen toxicity and reactive oxygen species. In: Free radicals in biology and medicine, 3rd edn. Oxford Univ Press, Oxford, pp 27–35

    Google Scholar 

  34. Li P, Nijhawan D, Budihardjo I et al (1997) cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  35. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 331:233–249

    Article  Google Scholar 

  36. Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y (2001) Essential role of voltage-dependent action channel in various forms of apoptosis in mammalian cells. J Cell Biol 152:237–250

    Article  PubMed  CAS  Google Scholar 

  37. Shidoji Y, Nakamura N, Moriwaki H, Muto Y (1997) Rapid loss in the mitochondrial membrane potential during geranylgeranoic acid-induced apoptosis. Biochem Biophys Res Commun 230:58–63

    Article  PubMed  CAS  Google Scholar 

  38. Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    Article  PubMed  CAS  Google Scholar 

  39. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 264:343–347

    Article  PubMed  CAS  Google Scholar 

  40. Petrosillo G, Ruggiero FM (2003) Role of reative oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2203–2208

    Article  CAS  Google Scholar 

  41. Kagan VE, Borisenko GG, Tyurina Y et al (2004) Oxidative lipidomics of apoptosis: Redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Rad Biol Med 37:1963–1985

    Article  PubMed  CAS  Google Scholar 

  42. Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y (2000) Mitochondrial phopholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycemia-induced apoptosis. Biochem J 351(Pt-1):183–193

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyasu Nakaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibayama-Imazu, T., Sonoda, I., Sakairi, S. et al. Production of superoxide and dissipation of mitochondrial transmembrane potential by vitamin K2 trigger apoptosis in human ovarian cancer TYK-nu cells. Apoptosis 11, 1535–1543 (2006). https://doi.org/10.1007/s10495-006-7979-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-7979-5

Keywords

Navigation