Skip to main content

Fluorescence-Activated Cell Sorting as a Tool for Recombinant Strain Screening

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2513))

Abstract

Metabolic engineering of microbial cells is the discipline of optimizing microbial metabolism to enable and improve the production of target molecules ranging from biofuels and chemical building blocks to high-value pharmaceuticals. The advances in genetic engineering have eased the construction of highly engineered microbial strains and the generation of genetic libraries. Intracellular metabolite-responsive biosensors facilitate high-throughput screening of these libraries by connecting the levels of a metabolite of interest to a fluorescence output. Fluorescent-activated cell sorting (FACS) enables the isolation of highly fluorescent single cells and thus genotypes that produce higher levels of the metabolite of interest. Here, we describe a high-throughput screening method for recombinant yeast strain screening based on intracellular biosensors and FACS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358. https://doi.org/10.1126/science.1193990

    Article  CAS  PubMed  Google Scholar 

  2. Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. PNAS 105:20404–20409. https://doi.org/10.1073/pnas.0811011106

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shao Z, Zhao H (2013) Construction and engineering of large biochemical pathways via DNA assembler. In: Polizzi KM, Kontoravdi C (eds) Synthetic biology. Humana Press, Totowa, pp 85–106

    Chapter  Google Scholar 

  4. Jakočiūnas T, Jensen MK, Keasling JD (2016) CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44–59. https://doi.org/10.1016/j.ymben.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  5. Smith JD, Suresh S, Schlecht U, Wu M, Wagih O, Peltz G, Davis RW, Steinmetz LM, Parts L, St. Onge RP (2016) Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 17:45. https://doi.org/10.1186/s13059-016-0900-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferreira R, Skrekas C, Hedin A, Sánchez BJ, Siewers V, Nielsen J, David F (2019) Model-assisted fine-tuning of central carbon metabolism in yeast through dCas9-based regulation. ACS Synth Biol 8:2457–2463. https://doi.org/10.1021/acssynbio.9b00258

    Article  CAS  PubMed  Google Scholar 

  7. Jones GM, Stalker J, Humphray S, West A, Cox T, Rogers J, Dunham I, Prelich G (2008) A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat Methods 5:239–241. https://doi.org/10.1038/nmeth.1181

    Article  CAS  PubMed  Google Scholar 

  8. Gertz J, Siggia ED, Cohen BA (2009) Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457:215–218. https://doi.org/10.1038/nature07521

    Article  CAS  PubMed  Google Scholar 

  9. Stevenson LF, Kennedy BK, Harlow E (2001) A large-scale overexpression screen in Saccharomyces cerevisiae identifies previously uncharacterized cell cycle genes. PNAS 98:3946–3951. https://doi.org/10.1073/pnas.051013498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dabirian Y, Gonçalves Teixeira P, Nielsen J, Siewers V, David F (2019) FadR-based biosensor-assisted screening for genes enhancing fatty acyl-CoA pools in Saccharomyces cerevisiae. ACS Synth Biol 8:1788–1800. https://doi.org/10.1021/acssynbio.9b00118

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Jensen MK, Keasling JD (2015) Development of biosensors and their application in metabolic engineering. Curr Opin Chem Biol 28:1–8. https://doi.org/10.1016/j.cbpa.2015.05.013

    Article  CAS  PubMed  Google Scholar 

  12. Rogers JK, Taylor ND, Church GM (2016) Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol 42:84–91. https://doi.org/10.1016/j.copbio.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  13. De Paepe B, Peters G, Coussement P, Maertens J, De Mey M (2017) Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol 44:623–645. https://doi.org/10.1007/s10295-016-1862-3

    Article  CAS  PubMed  Google Scholar 

  14. David F, Nielsen J, Siewers V (2016) Flux control at the Malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae. ACS Synth Biol 5:224–233. https://doi.org/10.1021/acssynbio.5b00161

    Article  CAS  PubMed  Google Scholar 

  15. Michener JK, Smolke CD (2012) High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng 14:306–316. https://doi.org/10.1016/j.ymben.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  16. Verduyn C, Postma E, Scheffers WA, Dijken JPV (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517. https://doi.org/10.1002/yea.320080703

    Article  CAS  PubMed  Google Scholar 

  17. Benatuil L, Perez JM, Belk J, Hsieh C-M (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159. https://doi.org/10.1093/protein/gzq002

    Article  CAS  PubMed  Google Scholar 

  18. Lee JS, Kallehauge TB, Pedersen LE, Kildegaard HF (2015) Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep 5:8572. https://doi.org/10.1038/srep08572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patrick WM, Firth AE, Blackburn JM (2003) User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries Wayne M. Patrick and Andrew E. Firth contributed equally to this work. Protein Eng Design Select 16:451–457. https://doi.org/10.1093/protein/gzg057

    Article  CAS  Google Scholar 

  20. Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9:1797–1804. https://doi.org/10.1002/cbic.200800298

    Article  CAS  PubMed  Google Scholar 

  21. Lam FH, Hartner FS, Fink GR, Stephanopoulos G (2010) Chapter 20 – enhancing stress resistance and production phenotypes through transcriptome engineering. In: Methods in enzymology. Academic Press, pp 509–532

    Google Scholar 

  22. Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12:828–863. https://doi.org/10.1038/nprot.2017.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8:2180–2196. https://doi.org/10.1038/nprot.2013.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jensen ED, Ferreira R, Jakočiūnas T, Arsovska D, Zhang J, Ding L, Smith JD, David F, Nielsen J, Jensen MK, Keasling JD (2017) Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microb Cell Factories 16:46. https://doi.org/10.1186/s12934-017-0664-2

    Article  CAS  Google Scholar 

  25. Liu H, Wei Z, Dominguez A, Li Y, Wang X, Qi LS (2015) CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics 31:3676–3678. https://doi.org/10.1093/bioinformatics/btv423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galdieri L, Mehrotra S, Yu S, Vancura A (2010) Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS: J Integr Biol 14:629–638. https://doi.org/10.1089/omi.2010.0069

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Skrekas, C., Ferreira, R., David, F. (2022). Fluorescence-Activated Cell Sorting as a Tool for Recombinant Strain Screening. In: Mapelli, V., Bettiga, M. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 2513. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2399-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2399-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2398-5

  • Online ISBN: 978-1-0716-2399-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics