Skip to main content
Log in

Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Microbial fermentation produces a racemic mixture of 2,3-butanediol ((R,R)-BD, (S,S)-BD, and meso-BD), and the compositions and physiochemical properties vary from microorganism to microorganism. Although the meso form is much more difficult to transport and store because of its higher freezing point than those of the optically active forms, most microorganisms capable of producing 2,3-BD mainly yield meso-2,3-BD. Thus, we developed a metabolically engineered (R,R)-2,3-BD overproducing strain using a Klebsiella oxytoca ΔldhA ΔpflB strain, which shows an outstanding 2,3-BD production performance with more than 90 % of the meso form. A budC gene encoding 2,3-BD dehydrogenase in the K. oxytoca ΔldhA ΔpflB strain was replaced with an exogenous gene encoding (R,R)-2,3-BD dehydrogenase from Paenibacillus polymyxa (K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH strain), and then its expression level was further amplified with using a pBBR1MCS plasmid. The fed-batch fermentation of the K. oxytoca ΔldhA ΔpflB ΔbudC::PBDH (pBBR-PBDH) strain with intermittent glucose feeding allowed the production of 106.7 g/L of (R,R)-2,3-BD [meso-2,3-BD, 9.3 g/L], with a yield of 0.40 g/g and a productivity of 3.1 g/L/h, which should be useful for the industrial application of 2,3-BD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bartowsky EJ, Henschke PA (2004) The ‘buttery’ attribute of wine—diacetyl—desirability, spoilage and beyond. Int J Food Microbiol 96:235–252

    Article  CAS  PubMed  Google Scholar 

  2. Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27:715–725

    Article  CAS  PubMed  Google Scholar 

  3. Cho JH, Rathnasingh C, Song H, Chung BW, Lee HJ, Seung D (2012) Fermentation and evaluation of Klebsiella pneumoniae and K. oxytoca on the production of 2,3-butanediol. Bioprocess Biosyst Eng 35:1081–1088

    Article  CAS  PubMed  Google Scholar 

  4. Coghill RD, Milner RT (1945) Heat transfer composition. U.S.A. Patent 2369435, Feb. 13, 1945

  5. Flick EW (1998) Industrial solvents handbook, 5th edn. Noyes Data Corp, Westwood, NJ

    Google Scholar 

  6. Fu J, Wang Z, Chen T, Liu W, Shi T, Wang G, Tang YJ, Zhao X (2014) NADH plays the vital role for chiral pure D-(−)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 111:2126–2131

    Article  CAS  PubMed  Google Scholar 

  7. Gao J, Yang HH, Feng XH, Li S, Xu H (2013) A 2,3-butanediol dehydrogenase from Paenibacillus polymyxa ZJ-9 for mainly producing R,R-2,3-butanediol: purification, characterization and cloning. J Basic Microbiol 53:733–741

    Article  CAS  PubMed  Google Scholar 

  8. Garg SK, Jain A (1995) Fermentative production of 2, 3-butanediol: a review. Bioresour Technol 51:103–109

    Article  CAS  Google Scholar 

  9. Hassler T, Schieder D, Pfaller R, Faulstich M, Sieber V (2012) Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol 124:237–244

    Article  PubMed  Google Scholar 

  10. Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Hu N, Li S (2009) Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour Technol 100:3410–3414

    Article  CAS  PubMed  Google Scholar 

  11. Ji XJ, Huang H, Li S, Du J, Lian M (2008) Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol Lett 30:731–734

    Article  CAS  PubMed  Google Scholar 

  12. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  PubMed  Google Scholar 

  13. Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758

    Article  CAS  PubMed  Google Scholar 

  14. Ji XJ, Nie ZK, Huang H, Ren LJ, Peng C, Ouyang PK (2011) Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol 89:1119–1125

    Article  CAS  PubMed  Google Scholar 

  15. Juni E, Heym GA (1956) A cyclic pathway for the bacterial dissimilation of 2, 3-butanediol, acetylmethylcarbinol, and diacetyl. I. General aspects of the 2, 3-butanediol cycle. J Bacteriol 71:425–432

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Kim D-K, Rathnasingh C, Song H, Lee HJ, Seung D, Chang YK (2013) Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. J Biosci Bioeng 116:186–192

    Article  CAS  PubMed  Google Scholar 

  17. Knowlton JW, Schieltz NC, Macmillan D (1946) Physical chemical properties of the 2,3-butanediols. J Am Chem Soc 68:208–210

    Article  CAS  Google Scholar 

  18. Kolter R, Siegele DA, Tormo A (1993) The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874

    Article  CAS  PubMed  Google Scholar 

  19. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  20. Nakashimada Y, Kanai K, Nishio N (1998) Optimization of dilution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett 20:1133–1138

    Article  CAS  Google Scholar 

  21. Nystrom T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  PubMed  Google Scholar 

  22. Park JM, Song H, Lee HJ, Seung D (2013) Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production. Microb Cell Fact 12:20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Park JM, Song H, Lee HJ, Seung D (2013) In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J Ind Microbiol Biotechnol 40:1057–1066

    Article  CAS  PubMed  Google Scholar 

  24. Qureshi N, Cheryan M (1989) Production of 2,3-butanediol by Klebsiella oxytoca. Appl Microbiol Biotechnol 30:440–443

    CAS  Google Scholar 

  25. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ui S, Hosaka T, Mizutani K, Ohtsuki T, Mimura A (2002) Acetylacetoin synthase as a marker enzyme for detecting the 2,3-butanediol cycle. J Biosci Bioeng 93:248–251

    Article  CAS  PubMed  Google Scholar 

  28. Volch M, Jansen NB, Ladisch MR, Tsao GT, Narayan R, Rodwell VW (1985) 2,3-butanediol. In: Murray M-Y (ed) Comprehensive biotechnology, vol 3, 1st edn. Pergamon Press, New York, pp 932–947

    Google Scholar 

  29. Yan Y, Lee CC, Liao JC (2009) Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem 7:3914–3917

    Article  CAS  PubMed  Google Scholar 

  30. Yang TH, Rathnasingh C, Lee HJ, Seung D (2014) Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. J Biotechnol 172:59–66

    Article  CAS  PubMed  Google Scholar 

  31. Yu B, Sun J, Bommareddy RR, Song L, Zeng AP (2011) Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Appl Environ Microbiol 77:4230–4233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zeng AP, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22:749–757

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol 101:1961–1967

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program (No. 10050407) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyohak Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.M., Rathnasingh, C. & Song, H. Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca . J Ind Microbiol Biotechnol 42, 1419–1425 (2015). https://doi.org/10.1007/s10295-015-1648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1648-z

Keywords

Navigation