Skip to main content
Log in

Soluble expression of pullulanase from Bacillus acidopullulyticus in Escherichia coli by tightly controlling basal expression

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Bacillus acidopullulyticus pullulanase (BaPul13A) is a widely used debranching enzyme in the starch industry. A few details have been reported on the heterologous expression of BaPul13A in Escherichia coli (E. coli). This study compares different E. coli expression systems to improve the soluble expression level of BaPul13A. When pET22b(+)/pET28a(+) was used as the expression vector, the soluble expression of BaPul13A can be achieved by tightly controlling basal expression, whereas pET-20b(+)/pGEX4T2 leads to insoluble inclusion bodies. An efficient process control strategy aimed at minimizing the formation of inclusion bodies and enhancing the production of pullulanase was developed by a step decrease of the temperature in a 5-L fermentor. The highest total enzyme activity of BaPul13A reached 1,156.32 U/mL. This work reveals that the T7 promoter with lac operator and lacI gene collectively contribute to the soluble expression of BaPul13A, whereas either a T7 promoter alone or combined with the lac operator and lacI gene results in poor solubility. Basal expression in the initial growth phase of the host significantly affects the solubility of BaPul13A in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baig F, Fernando LP, Salazar MA, Powell RR, Bruce TF, Harcum SW (2014) Dynamic transcriptional response of Escherichia coli to inclusion body formation. Biotechnol Bioeng 111(5):980–999. doi:10.1002/bit.25169

    Article  CAS  PubMed  Google Scholar 

  2. Basu A, Li X, Leong SS (2011) Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 92(2):241–251. doi:10.1007/s00253-011-3513-y

    Article  CAS  PubMed  Google Scholar 

  3. Capitini C, Conti S, Perni M, Guidi F, Cascella R, De Poli A, Penco A, Relini A, Cecchi C, Chiti F (2014) TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells. PLoS One 9(1):e86720. doi:10.1371/journal.pone.0086720

    Article  PubMed Central  PubMed  Google Scholar 

  4. de Groot NS, Espargaro A, Morell M, Ventura S (2008) Studies on bacterial inclusion bodies. Future Microbiol 3(4):423–435. doi:10.2217/17460913.3.4.423

    Article  PubMed  Google Scholar 

  5. Duan X, Chen J, Wu J (2013) Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes. Bioresour Technol 146:379–385. doi:10.1016/j.biortech.2013.07.074

    Article  CAS  PubMed  Google Scholar 

  6. Dubendorff JW, Studier FW (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 219(1):45–59. doi:10.1016/0022-2836(91)90856-2

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Fruitos E, Vazquez E, Diez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, Veciana J, Villaverde A (2012) Bacterial inclusion bodies: making gold from waste. Trends Biotechnol 30(2):65–70. doi:10.1016/j.tibtech.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  8. Gatti-Lafranconi P, Natalello A, Ami D, Doglia SM, Lotti M (2011) Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. FEBS J 278(14):2408–2418. doi:10.1111/j.1742-4658.2011.08163.x

    Article  CAS  PubMed  Google Scholar 

  9. Hoffmann F, Posten C, Rinas U (2001) Kinetic model of in vivo folding and inclusion body formation in recombinant Escherichia coli. Biotechnol Bioeng 72(3):315–322

    Article  CAS  PubMed  Google Scholar 

  10. Lappalainen A, Nikupaavola ML, Suortti T, Poutanen K (1991) Purification and characterization of Bacillus-Acidopullulyticus pullulanase for enzymatic starch modification. Starch-Starke 43(12):477–482. doi:10.1002/star.19910431207

    Article  CAS  Google Scholar 

  11. Martinez-Alonso M, Garcia-Fruitos E, Ferrer-Miralles N, Rinas U, Villaverde A (2010) Side effects of chaperone gene co-expression in recombinant protein production. Microb Cell Fact 9:64. doi:10.1186/1475-2859-9-64

    Article  PubMed Central  PubMed  Google Scholar 

  12. McNulty DE, Claffee BA, Huddleston MJ, Porter ML, Cavnar KM, Kane JF (2003) Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr Purif 27(2):365–374

    Article  CAS  PubMed  Google Scholar 

  13. Mertens N, Remaut E, Fiers W (1995) Tight transcriptional control mechanism ensures stable high-level expression from T7 promoter-based expression plasmids. Biotechnology (N Y) 13(2):175–179

    Article  CAS  Google Scholar 

  14. Mikami B, Iwamoto H, Malle D, Yoon HJ, Demirkan-Sarikaya E, Mezaki Y, Katsuya Y (2006) Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol 359(3):690–707. doi:10.1016/j.jmb.2006.03.058

    Article  CAS  PubMed  Google Scholar 

  15. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260(3):289–298. doi:10.1006/jmbi.1996.0399

    Article  CAS  PubMed  Google Scholar 

  16. Rajan RS, Illing ME, Bence NF, Kopito RR (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci USA 98(23):13060–13065. doi:10.1073/pnas.181479798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2(4):891–903. doi:10.1038/nprot.2007.72

    Article  CAS  PubMed  Google Scholar 

  18. Rokney A, Shagan M, Kessel M, Smith Y, Rosenshine I, Oppenheim AB (2009) E. coli transports aggregated proteins to the poles by a specific and energy-dependent process. J Mol Biol 392(3):589–601. doi:10.1016/j.jmb.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  19. Sabate R, de Groot NS, Ventura S (2010) Protein folding and aggregation in bacteria. Cell Mol Life Sci 67(16):2695–2715. doi:10.1007/s00018-010-0344-4

    Article  CAS  PubMed  Google Scholar 

  20. Schlegel S, Rujas E, Ytterberg AJ, Zubarev RA, Luirink J, de Gier JW (2013) Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microb Cell Fact 12:24. doi:10.1186/1475-2859-12-24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schugerl K, Hubbuch J (2005) Integrated bioprocesses. Curr Opin Microbiol 8(3):294–300. doi:10.1016/j.mib.2005.01.002

    Article  PubMed  Google Scholar 

  22. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128. doi:10.1016/j.jbiotec.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  23. Sorensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4(1):1. doi:10.1186/1475-2859-4-1

    Article  PubMed Central  PubMed  Google Scholar 

  24. Turkenburg JP, Brzozowski AM, Svendsen A, Borchert TV, Davies GJ, Wilson KS (2009) Structure of a pullulanase from Bacillus acidopullulyticus. Proteins 76(2):516–519. doi:10.1002/prot.22416

    Article  CAS  PubMed  Google Scholar 

  25. Ushasree MV, Vidya J, Pandey A (2014) Gene cloning and soluble expression of Aspergillus niger phytase in E. coli cytosol via chaperone co-expression. Biotechnol Lett 36(1):85–91. doi:10.1007/s10529-013-1322-3

    Article  CAS  PubMed  Google Scholar 

  26. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24(4):179–185. doi:10.1016/j.tibtech.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  27. Voulgaridou GP, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A (2013) Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1. PLoS One 8(2):e56582. doi:10.1371/journal.pone.0056582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wu W, Xing L, Zhou B, Lin Z (2011) Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Fact 10:9. doi:10.1186/1475-2859-10-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yang H, Liu L, Shin HD, Li J, Du G, Chen J (2013) Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline alpha-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency. PLoS One 8(3):e57403. doi:10.1371/journal.pone.0057403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Wenwen Guo and Lu Li for the drawing figures. This work was supported by the National Basic Research Program of China (973 Program) (Grant No.: 2013CB733602) and the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51401A).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yankun Yang or Zhonghu Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Li, Y., Liu, X. et al. Soluble expression of pullulanase from Bacillus acidopullulyticus in Escherichia coli by tightly controlling basal expression. J Ind Microbiol Biotechnol 41, 1803–1810 (2014). https://doi.org/10.1007/s10295-014-1523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1523-3

Keywords

Navigation