Skip to main content
Log in

Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this report, a novel zymogram assay and coupled phosphoketolase assay were employed to demonstrate that Clostridium acetobutylicum gene CAC1343 encodes a bi-functional xylulose-5-P/fructose-6-P phosphoketolase (XFP). The specific activity of purified recombinant XFP was 6.9 U/mg on xylulose-5-P and 21 U/mg on fructose-6-P, while the specific activity of XFP in concentrated C. acetobutylicum whole-cell extract was 0.094 and 0.52 U/mg, respectively. Analysis of crude cell extracts indicated that XFP activity was present in cells grown on arabinose but not glucose and quantitative PCR was used to show that CAC1343 mRNA expression was induced 185-fold during growth on arabinose when compared to growth on glucose. HPLC analysis of metabolites revealed that during growth on xylose and glucose more butyrate than acetate was formed with final acetate:butyrate ratios of 0.72 and 0.83, respectively. Growth on arabinose caused a metabolic shift to more oxidized products with a final acetate:butyrate ratio of 1.95. The shift towards more oxidized products is consistent with the presence of an XFP, suggesting that arabinose is metabolized via a phosphoketolase pathway while xylose is probably metabolized via the pentose phosphate pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Plant cell walls. Garland Science, Taylor and Francis Group, LLC, New York, NY

  2. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  PubMed  CAS  Google Scholar 

  3. Finch AS, Mackie TD, Sund CJ, Sumner JJ (2011) Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. Bioresource Technol 102(1):312–315. doi:10.1016/j.biortech.2010.06.149

    Article  CAS  Google Scholar 

  4. Gheshlaghi R, Scharer JM, Moo-Young M, Chou CP (2009) Metabolic pathways of clostridia for producing butanol. Biotechnol Adv 27(6):764–781. doi:10.1016/j.biotechadv.2009.06.002

    Article  PubMed  CAS  Google Scholar 

  5. Goldberg ML, Racker E (1962) Formation and isolation of a glycolaldehyde-phosphoketolase intermediate. J Biol Chem 237:3841–3842

    PubMed  CAS  Google Scholar 

  6. Grimmler C, Held C, Liebl W, Ehrenreich A (2010) Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of d-glucose and d-xylose. J Biotechnol 150(3):315–323. doi:10.1016/j.jbiotec.2010.09.938

    Article  PubMed  CAS  Google Scholar 

  7. Gu Y, Li J, Zhang L, Chen J, Niu L, Yang Y, Yang S, Jiang W (2009) Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. J Biotechnol 143(4):284–287. doi:10.1016/j.jbiotec.2009.08.009

    Article  PubMed  CAS  Google Scholar 

  8. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524

    PubMed  CAS  Google Scholar 

  9. Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijarvi A, Vakeva M, van Heiningen A, Granstrom T (2012) Butanol production from lignocellulosics. Biotechnol Lett 34(8):1415–1434. doi:10.1007/s10529-012-0926-3

    Article  PubMed  CAS  Google Scholar 

  10. Kim BH, Gadd GM (2008) Bacterial physiology and metabolism. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Lee J, Yun H, Feist AM, Palsson BO, Lee SY (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biot 80(5):849–862. doi:10.1007/s00253-008-1654-4

    Article  CAS  Google Scholar 

  12. Lee JY, Jang YS, Lee J, Papoutsakis ET, Lee SY (2009) Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol J 4(10):1432–1440. doi:10.1002/biot.200900142

    Article  PubMed  CAS  Google Scholar 

  13. Lutke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22(5):634–647. doi:10.1016/j.copbio.2011.01.011

    Article  PubMed  Google Scholar 

  14. Manchenko GP (2003) Handbook of detection of enzymes on electrophoretic gels, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  15. Meile L, Rohr LM, Geissman TA, Herensperger M, Teuber M (2001) Characterization of the d-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol 183(9):2929–2936

    Article  PubMed  CAS  Google Scholar 

  16. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37(1):52–68. doi:10.1016/j.pecs.2010.01.003

    Article  CAS  Google Scholar 

  17. Ounine K, Petitdemange H, Raval G, Gay R (1983) Acetone-butanol production from pentoses by Clostridium Acetobutylicum. Biotechnol Lett 5(9):605–610

    Article  CAS  Google Scholar 

  18. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  19. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66

    Article  PubMed  CAS  Google Scholar 

  20. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  21. Sanchez B, Zuniga M, Gonzalez-Candelas F, de los Reyes-Gavilan CG, Margolles A (2010) Bacterial and eukaryotic phosphoketolases: phylogeny, distribution and evolution. J Mol Microb Biotech 18(1):37–51. doi:10.1159/000274310

    Article  CAS  Google Scholar 

  22. Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101 (5):1036–1052. doi:10.1002/Bit.22010

    Google Scholar 

  23. Servinsky MD, Kiel JT, Dupuy NF, Sund CJ (2010) Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiol-Sgm 156:3478–3491. doi:10.1099/Mic.0.037085-0

    Article  CAS  Google Scholar 

  24. Shinkawa S, Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Improved homo l-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl Microbiol Biot 91(6):1537–1544. doi:10.1007/s00253-011-3342-z

    Article  CAS  Google Scholar 

  25. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988) Thiolase from Clostridium-acetobutylicum Atcc-824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54(11):2717–2722

    PubMed  CAS  Google Scholar 

  26. Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S (2011) Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol 77(22):7886–7895. doi:10.1128/AEM.00644-11

    Article  PubMed  CAS  Google Scholar 

  27. Zhang L, Leyn SA, Gu Y, Jiang W, Rodionov DA, Yang C (2012) Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum. J Bacteriol 194(5):1055–1064. doi:10.1128/JB.06241-11

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Sund.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Servinsky, M.D., Germane, K.L., Liu, S. et al. Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824. J Ind Microbiol Biotechnol 39, 1859–1867 (2012). https://doi.org/10.1007/s10295-012-1186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1186-x

Keywords

Navigation