Skip to main content
Log in

l(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150–180 g l−1) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l−1 and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to l(+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867

    Article  PubMed  CAS  Google Scholar 

  2. Bai DM, Wei Q, Yan ZH, Zhao XM, Li XG, Xu SM (2003) Fed-batch fermentation of Lactobacillus lactis for hyper-production of l-lactic acid. Biotechnol Lett 25:1833–1835

    Article  PubMed  CAS  Google Scholar 

  3. Brown SF (2003) Bioplastic fantastic. Fortune 148:92–94

    PubMed  Google Scholar 

  4. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  5. Gauss WF, Suzuki S, Takagi M (1976) Manufacture of alcohol from cellulosic materials using plural ferments. US Patent 3,990,944

  6. Goncalves LMD, Ramos A, Almeida JS, Xavier AMRB, Carrondo MJT (1997) Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus. Appl Microbiol Biotechnol 48:346–350

    Article  CAS  Google Scholar 

  7. Hofvendahl K, Hans-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enz Microb Technol 26:87–107

    Article  CAS  Google Scholar 

  8. Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotech Bioeng 36:275–287

    Article  CAS  Google Scholar 

  9. Huang HJ, Ramaswamy S, Al-Dajani WW, Tschirner U (2010) Process modeling and analysis of pulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanol production: a comparative study. Bioresour Technol 101:624–631

    Article  PubMed  CAS  Google Scholar 

  10. Ikushima S, Fujii T, Kobayashi O, Yoshida S, Yoshida A (2009) Genetic engineering of Candida utilis yeast for efficient production of l-lactic acid. Biosci Biotechnol Biochem 73:1818–1824

    Article  PubMed  CAS  Google Scholar 

  11. Iyer PV, Lee YY (1999) Product inhibition in simultaneous saccharification and fermentation of cellulose into lactic acid. Biotechnol Lett 21:371–373

    Article  CAS  Google Scholar 

  12. Iyer PV, Thomas S, Lee YY (2000) High-yield fermentation of pentoses into lactic acid. Appl Biochem Biotechnol 84–86:665–677

    Article  PubMed  Google Scholar 

  13. Kang L, Wang W, Lee YY (2010) Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF. Appl Biochem Biotechnol 161:53–66

    Article  PubMed  CAS  Google Scholar 

  14. Leber J (2010) Economics improve for first commercial cellulosic ethanol plants. New York Times

  15. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  16. Maas RH, Springer J, Eggink G, Weusthuis RA (2008) Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on l+-lactic acid production. J Ind Microbiol Biotechnol 35:569–578

    Article  PubMed  CAS  Google Scholar 

  17. Marinova M, Mateos-Espejel E, Jemaa N, Paris J (2009) Addressing the increased energy demand of a kraft mill biorefinery: the hemicellulose extraction case. Chem Eng Res Design 87:1269–1275

    Article  CAS  Google Scholar 

  18. Odling-Smee L (2007) Biofuels bandwagon hits a rut. Nature 446:483

    Article  PubMed  Google Scholar 

  19. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423

    Article  PubMed  CAS  Google Scholar 

  20. Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858–7861

    Article  PubMed  CAS  Google Scholar 

  21. Ou MS, Mohammed N, Ingram LO, Shanmugam KT (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155:379–385

    Article  PubMed  CAS  Google Scholar 

  22. Patel MA, Ou M, Ingram LO, Shanmugam KT (2005) Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotech Prog 21:1453–1460

    Article  CAS  Google Scholar 

  23. Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam KT (2006) Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol 72:3228–3235

    Article  PubMed  CAS  Google Scholar 

  24. Payot T, Chemaly Z, Fick M (1999) Lactic acid production by Bacillus coagulans—Kinetic studies and optimization of culture medium for batch and continuous fermentations. Enz Microb Technol 24:191–199

    Article  CAS  Google Scholar 

  25. Pieterse B, Leer RJ, Schuren FH, van der Werf MJ (2005) Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:3881–3894

    Article  PubMed  CAS  Google Scholar 

  26. Stulke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opinion in Microbiol 2:195–201

    Article  CAS  Google Scholar 

  27. Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury PE (2002) Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl Microbiol Biotechnol 60:160–167

    Article  PubMed  CAS  Google Scholar 

  28. Tao L, Aden A (2009) The economics of current and future biofuels. In vitro Cell Dev Biol-Plant 45:199–217

    Article  Google Scholar 

  29. Tenenbaum DJ (2008) Food vs. fuel: diversion of crops could cause more hunger. Environ Health Perspect 116:A254–A257

    Article  PubMed  Google Scholar 

  30. Underwood SA, Zhou S, Causey TB, Yomano LP, Shanmugam KT, Ingram LO (2002) Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli. Appl Environ Microbiol 68:6263–6272

    Article  PubMed  CAS  Google Scholar 

  31. Wee Y, Kim J, Ryu H (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  32. Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803

    Article  PubMed  CAS  Google Scholar 

  33. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  PubMed  CAS  Google Scholar 

  34. Yun J-S, Wee Y-J, Ryu H-W (2003) Production of optically pure l(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enz Microbial Technol 33:416–423

    Article  CAS  Google Scholar 

  35. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Department of Energy (DE-FG36-04GO14019), the State of Florida, University of Florida Agricultural Experiment Station and the Florida Energy Systems Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Shanmugam.

Additional information

This article is based on a presentation at the 32nd Symposium on Biotechnology for Fuels and Chemicals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, M.S., Ingram, L.O. & Shanmugam, K.T. l(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. J Ind Microbiol Biotechnol 38, 599–605 (2011). https://doi.org/10.1007/s10295-010-0796-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0796-4

Keywords

Navigation