Skip to main content
Log in

Expression of Thermobifida fusca thermostable raw starch digesting alpha-amylase in Pichia pastoris and its application in raw sago starch hydrolysis

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A gene encoding the thermostable raw starch digesting α-amylase in Thermobifida fusca NTU22 was amplified by PCR, sequenced and cloned into Pichia pastoris X-33 host strain using the vector pGAPZαA, allowing constitutive expression and secretion of the protein. Recombinant expression resulted in high levels of extracellular amylase production, as high as 510 U/l in the Hinton flask culture broth. The purified amylase showed a single band at about 65 kDa by SDS-polyacrylamide gel electrophoresis after being treated with endo-β-N-acetylglycosaminidase H, and this agrees with the predicted size based on the nucleotide sequence. About 75% of the original activity remained after heat treatment at 60°C for 3 h. The optimal pH and temperature of the purified amylase were 7.0 and 60°C, respectively. The purified amylase exhibited a high level of activity with raw sago starch. After 48-h treatment, the DPw of raw sago starch obviously decreased from 830,945 to 378,732. The surface of starch granules was rough, and some granules displayed deep cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henrissat B (1991) A classification of glycohydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  PubMed  Google Scholar 

  2. Nguyen QD, Rezessy-Szabo JM, Claeyssens M, Stals I, Hoschke A (2002) Purification and characterization of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme Microb Technol 31:345–352

    Article  CAS  Google Scholar 

  3. Singh H, Soni SK (2001) Production of starch gel digesting amyloglucosidase by Aspergillus oryzae HS-3 in solid state fermentation. Process Biochem 37:453–459

    Article  Google Scholar 

  4. Kelly CT, Tigue MM, Doyle EM, Fogarty WM (1995) The raw starch degrading alkaline amylase of Bacillus sp. IMD370. J Ind Microbiol 15:446–448

    Article  CAS  Google Scholar 

  5. Abd-Aziz S (2002) Sago starch and its utilization. J Biosci Bioeng 94:526–529

    CAS  PubMed  Google Scholar 

  6. Wang WJ, Powell AD, Oates CG (1996) Sago starch as a biomass source: raw sago starch hydrolysis by commercial enzymes. Bioresour Technol 55:55–61

    Article  Google Scholar 

  7. Liu WH, Yang CH (2002) The isolation and identification of a lignocellulolytic and thermophilic actinomycete. Food Sci Agric Chem 4:89–94

    CAS  Google Scholar 

  8. Yang CH, Cheng KC, Liu WH (2003) Optimization of medium composition for production of extracellular amylase by Thermobifida fusca using a response surface methodology. Food Sci Agric Chem 5:35–40

    CAS  Google Scholar 

  9. Yang CH, Liu WH (2004) Purification and properties of a maltotriose-producing α-amylase from Thermobifida fusca. Enzyme Microb Technol 35:254–260

    Article  CAS  Google Scholar 

  10. Yang CH, Liu WH (2007) Cloning and characterization of a maltotriose-producing α-amylase gene from Thermobifida fusca. J Ind Microbiol Biotechnol 34:325–330

    Article  CAS  PubMed  Google Scholar 

  11. Zamost BL, Nielsen HK, Starnes RL (1991) Thermostable enzymes for industrial application. J Ind Microbiol 8:71–82

    Article  CAS  Google Scholar 

  12. Cheng YF, Yang CH, Liu WH (2005) Cloning and expression of Thermobifida xylanase gene in the methylotrophic yeast Pichia pastoris. Enzyme Microb Technol 37:541–546

    Article  CAS  Google Scholar 

  13. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  14. Zhang AL, Zhang TY, Luo JX, Chen SC, Guan WJ, Fu CY, Peng SQ, Li HL (2007) Constitutive expression of human angiostatin in Pichia pastoris by high-density cell culture. J Ind Microbiol Biotechnol 34:117–122

    Article  PubMed  Google Scholar 

  15. Reddy ST, Kumar SN, Haas AL, Dahms NM (2003) Biochemical and functional properties of the full-length cation-dependent mannose 6-phosphate receptor expressed in Pichia pastoris. Biochem Biophys Res Commun 309:643–651

    Article  CAS  PubMed  Google Scholar 

  16. Lin JH, Lee SY, Chang YH (2003) Effect of acid-alcohol treatment on the molecular structure and physiochemical properties of maize and potato starches. Carbohydr Polym 53:475–482

    Article  CAS  Google Scholar 

  17. Lin JH, Chang YH, Hsu YH (2009) Degradation of cotton cellulose treated with hydrochloric acid either in water or in ethanol. Food Hydrocolloid 23:1548–1553

    Article  CAS  Google Scholar 

  18. Wang WJ, Powell AD, Oates CG (1995) Pattern of enzyme hydrolysis in raw sago starch: effects of processing history. Carbohydr Polym 26:91–97

    Article  CAS  Google Scholar 

  19. Goyal N, Gupta JK, Soni SK (2005) A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb Technol 37:723–734

    Article  CAS  Google Scholar 

  20. Dettori BG, Priest FG, Stark JR (1992) Hydrolysis of starch granules by the amylase from Bacillus stearothermophilus NCA 26. Process Biochem 27:17–21

    Article  Google Scholar 

  21. Itkor P, Tsukagoshi N, Udaka S (1989) Purification and properties of divalent cation-dependent raw starch digesting α-amylase from Bacillus sp. B. 1018. J Ferment Bioeng 68:247–251

    Article  CAS  Google Scholar 

  22. Saha BC, Lecureux LW, Zupus JG (1988) Raw starch adsorption-desorption purification of thermostable α-amylase from Clostridium thermosulfurogenes. Anal Biochem 175:569–572

    Article  CAS  PubMed  Google Scholar 

  23. Gautam SP, Gupta A (1992) Production of raw starch digestive amylases by Pichia anomala and Pichia holestii. Biomed Lett 47:61–66

    CAS  Google Scholar 

  24. Ktamoto N, Yamagata H, Kato T, Tsukagoshi N, Udaka S (1988) Cloning and sequencing of the gene encoding thermophilic β-amylase of Clostridium thermosulfurogenes. J Bacteriol 170:5848–5854

    Google Scholar 

  25. Cos O, Ramón R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microbial Cell Factories 5:17. doi:10.1186/1475-2859-5-17

    Article  PubMed  Google Scholar 

  26. Goodrick JC, Xu M, Finnegan R, Schilling BM, Schiavi S, Hoppe H, Wan NC (2001) High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system. Biotechnol Bioeng 74:492–497

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Hsun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CH., Huang, YC., Chen, CY. et al. Expression of Thermobifida fusca thermostable raw starch digesting alpha-amylase in Pichia pastoris and its application in raw sago starch hydrolysis. J Ind Microbiol Biotechnol 37, 401–406 (2010). https://doi.org/10.1007/s10295-009-0686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0686-9

Keywords

Navigation