Skip to main content
Log in

Enhancing functional expression of heterologous lipase B in Escherichia coli by extracellular secretion

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Functional expression of recombinant Pseudozyma antarctica lipase B (PalB) in Escherichia coli has been technically problematic due to protein misfolding, ineffective disulfide bond formation, and protein instability associated with intracellular proteolysis. To overcome these problems, an alternative approach was explored in this study by extracellular secretion of PalB via two Sec-independent secretion systems, i.e., the α-hemolysin (type I) and the modified flagellar (type III) secretion systems, which can export proteins of interest from the cytoplasm directly to the exterior of the cell. Both shaker flask and bioreactor cultivations were performed to characterize the developed PalB expression/secretion systems. Bioactive PalB was expressed and secreted extracellularly either as a HlyA fusion (i.e., PalB-HlyA via type I system) or an intact protein (via type III system). However, the secretion intermediates in the intracellular fraction of culture samples were non-bioactive even though they were soluble, suggesting that the extracellular secretion did mediate the development of PalB activity. Also importantly, the secretion strategy appeared to have a minimum impact on cell physiology. PalB secretion via the type I system was fast with higher specific PalB activities but poor cell growth. On the other hand, the secretion via the type III system was slow with lower specific PalB activities but effective cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andersen C, Koronakis E, Bokma E, Eswaran J, Humphreys D, Hughes C (2002) Transition to the open state of the TolC periplasmic tunnel entrance. Proc Natl Acad Sci USA 99:11103–11108

    Article  CAS  PubMed  Google Scholar 

  2. Anderson DM, Schneewind O (1999) Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Mol Microbiol 31:1139–1148

    Article  CAS  PubMed  Google Scholar 

  3. Anderson EM, Larsson KM, Kirk O (1998) One biocatalyst—many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatal Biotransform 16:181–204

    Article  CAS  Google Scholar 

  4. Better M, Bernhard SL, Lei SP, Fishwild DM, Lane JA, Carroll SF (1993) Potent anti-CD5 ricin A chain immunoconjugates from bacterially produced FabV and FabV2. Proc Nat Acad Sci USA 90:457–461

    Article  CAS  PubMed  Google Scholar 

  5. Binet R, Letoffe S, Ghigo JM, Delepelaire P, Wandersman C (1997) Protein secretion by gram-negative bacterial ABC exporters: a review. Gene 192:7–11

    Article  CAS  PubMed  Google Scholar 

  6. Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Escherichia coli. J Biotechnol 125:474–483

    Article  CAS  PubMed  Google Scholar 

  7. Blight MA, Holland IB (1994) Heterologous protein secretion and the versatile Escherichia coli haemolysis translocator. Trends Biotechnol 12:450–455

    Article  CAS  PubMed  Google Scholar 

  8. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Article  CAS  PubMed  Google Scholar 

  9. Bremer E, Silhavy TJ, Weisemann JM, Weinstock GM (1984) Lambda plac Mu: a transposable derivative of bacteriophage lambda for creating lacZ protein fusions in a single step. J Bacteriol 158:1084–1093

    CAS  PubMed  Google Scholar 

  10. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  PubMed  Google Scholar 

  11. Chung CT, Miller RH (1993) Preparation and storage of competent Escherichia coli cells. Methods Enzymol 218:621–627

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez LA, de Lorenzo V (2001) Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway. Mol Microbiol 40:332–346

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez LA, Sola I, Enjuanes L, de Lorenzo V (2000) Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysin system. Appl Environ Microbiol 66:5024–5029

    Article  CAS  PubMed  Google Scholar 

  14. Galan JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328

    Article  CAS  PubMed  Google Scholar 

  15. Gentschev I, Dietrich G, Goebel W (2002) The E. coli alpha-hemolysin secretion system and its use in vaccine development. Trends Microbiol 10:39–45

    Article  CAS  PubMed  Google Scholar 

  16. Gold L (1990) Expression of heterologous proteins in Escherichia coli. Methods Enzymol 185:11–14

    Article  CAS  PubMed  Google Scholar 

  17. Gray L, Mackman N, Nicaud JM, Holland IB (2006) The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin from Escherichia coli. Mol Gen Genet 205:127–133

    Article  Google Scholar 

  18. Grodberg J, Dunn JJ (1988) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170:1245–1253

    CAS  PubMed  Google Scholar 

  19. Gumpert J, Hoischen C (1998) Use of cell wall-less bacteria (L-forms) for efficient expression and secretion of heterologous gene products. Curr Opin Biotechnol 9:506–509

    Article  CAS  PubMed  Google Scholar 

  20. Hanke C, Hess J, Schumacher G, Goebel W (1992) Processing by OmpT of fusion proteins carrying the HlyA transport signal during secretion by the Escherichia coli hemolysin transport system. Mol Gen Genet 233:42–48

    Article  CAS  PubMed  Google Scholar 

  21. Hoegh I, Patkar S, Halkier T, Hansen MT (1995) Two lipases from Candida antarctica: cloning and expression in Aspergillus oryzae. Can J Bot 869–875

  22. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    CAS  PubMed  Google Scholar 

  23. Koronakis V (2003) TolC: the bacterial exit duct for proteins and drugs. FEBS Lett 555:66–71

    Article  CAS  PubMed  Google Scholar 

  24. Krueger JK, Kulke MN, Schutt C, Stock J (1989) Protein inclusion body formation and purification. BioPharm 2:40–45

    CAS  Google Scholar 

  25. Liu D, Schmid RD, Rusnak M (2006) Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm—a screening system for a frequently used biocatalyst. Appl Microbiol Biotechnol 72:1024–1032

    Article  CAS  PubMed  Google Scholar 

  26. Lloyd SA, Norman M, Rosqvist R, Wolf-Watz H (2001) Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol 39:520–531

    Article  CAS  PubMed  Google Scholar 

  27. Majander K, Anton L, Antikainen J, Lang H, Brummer M, Korhonen TK, Wikstrom BW (2005) Extracellular secretion of polypeptides using a modified Escherichia coli flagellar secretion apparatus. Nat Biotechnol 23:475–481

    Article  CAS  PubMed  Google Scholar 

  28. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    CAS  PubMed  Google Scholar 

  29. Marino MH (1989) Expression systems for heterologous protein production. BioPharm 2:18–33

    CAS  Google Scholar 

  30. McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G (2004) Substrate specificity of the Escherichia coli outer membrane protease OmpT. J Bacteriol 186:5919–5925

    Article  CAS  PubMed  Google Scholar 

  31. Mergulhaoa FJM, Summersb DK, Monteiroa GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23:177–202

    Article  Google Scholar 

  32. Minamino T, Namba K (2004) Self-assembly and type III protein export of the bacterial flagellum. J Mol Microbiol Biotechnol 7:5–17

    Article  CAS  PubMed  Google Scholar 

  33. Moks T, Abrahmsen L, Holmgren E, Bilich M, Olsson A, Uhlen M (1987) Expression of human insulin-like growth factor I in bacteria: use of optimized gene fusion vectors to facilitate protein purification. Biochemistry 26:5239–5244

    Article  CAS  PubMed  Google Scholar 

  34. Olins PO, Lee SC (1993) Recent advances in heterologous gene expression in Escherichia coli. Curr Opin Biotechnol 4:520–525

    Article  CAS  PubMed  Google Scholar 

  35. Phillips TA, Vanbogelen RA, Neidhardt FC (1984) lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol 159:283–287

    CAS  PubMed  Google Scholar 

  36. Pollitt S, Zalkin H (1983) Role of primary structure and disulfide bond formation in b-lactamase secretion. J Bacteriol 153:27–32

    CAS  PubMed  Google Scholar 

  37. Rotticci-Mulder JC, Gustavsson M, Holmquist M, Hult K, Martinelle M (2001) Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain. Protein Expr Purif 21:386–392

    Article  CAS  PubMed  Google Scholar 

  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  39. Shokri A, Sande’n AM, Larsson G (2003) Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol 60:654–664

    CAS  PubMed  Google Scholar 

  40. Stebbins CE, Galan JE (2001) Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414:77–81

    Article  CAS  PubMed  Google Scholar 

  41. Szekely M (1980) From DNA to protein: the transfer of genetic information. Wiley, New York

    Google Scholar 

  42. Talmadge K, Gilbert W (1982) Cellular location affects protein stability in Escherichia coli. Proc Natl Acad Sci USA 79:1830–1833

    Article  CAS  PubMed  Google Scholar 

  43. Thanabalu T, Koronakis E, Hughes C, Koronakis V (1998) Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17:6487–6496

    Article  CAS  PubMed  Google Scholar 

  44. Thomas NA, Finlay BB (2003) Establishing order for type III secretion apparatus-a heirarchial process. Trends Microbiol 11:398–403

    Article  CAS  PubMed  Google Scholar 

  45. Tietz NW, Repique EV (1973) Proposed standard method for measuring lipase activity in serum by a continuous sampling technique. Clin Chem 19:1268–1275

    CAS  PubMed  Google Scholar 

  46. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  47. Tzschaschel BD, Guzman CA, Timmis KN, de Lorenzo V (1996) An Escherichia coli hemolysin transport system-based vector for the export of polypeptides: export of shiga-like toxin IIeB subunit by Salmonella typhimurium aroA. Nat Biotechnol 14:765–769

    Article  CAS  PubMed  Google Scholar 

  48. van der Wal FJ, ten Hagen-Jongman CM, Oudega B, Luirink J (1995) Optimization of bacteriocin-release-protein-induced protein release by Escherichia coli: extracellular production of the periplasmic molecular chaperone FaeE. Appl Microbiol Biotechnol 44:459–465

    Article  PubMed  Google Scholar 

  49. Wan EW, Baneyx F (1998) TolAIII co-overexpression facilitates the recovery of periplasmic recombinant proteins into the growth medium of Escherichia coli. Protein Expr Purif 14:13–22

    Article  CAS  PubMed  Google Scholar 

  50. Woodcock DM, Crowther PJ, Doherty J, Jefferson S, Decruz E, Noyerweidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucl Acids Res 17:3469–3478

    Article  CAS  PubMed  Google Scholar 

  51. Xu R, Du P, Fan JJ, Zhang Q, Li TP, Gan RB (2002) High-level expression and secretion of recombinant mouse endostatin by Escherichia coli. Protein Expr Purif 24:453–459

    Article  CAS  PubMed  Google Scholar 

  52. Xu Y, Lewis D, Chou CP (2008) Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli. Appl Microbiol Biotechnol 79:1035–1044

    Article  CAS  PubMed  Google Scholar 

  53. Xu Y, Yasin A, Tang R, Scharer JM, Moo-Young M, Chou CP (2008) Heterologous expression of lipase in Escherichia coli is limited by folding and disulfide bond formation. Appl Microbiol Biotechnol 81:79–87

    Article  CAS  PubMed  Google Scholar 

  54. Xu Y, Yasin A, Wucherpfennig T, Chou CP (2008) Enhancing functional expression of heterologous lipase in the periplasm of Escherichia coli. World J Microbiol Biotechnol 12:2827–2835

    Article  Google Scholar 

  55. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  56. Yonekura K, Yonekura SM, Namba K (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424:643–650

    Article  CAS  PubMed  Google Scholar 

  57. Zhang N, Suen W-C, Windsor W, Xiao L, Madison V, Zaks A (2003) Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 16:599–605

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Research Chair (CRC) program. We greatly appreciate the E. coli strain and plasmids provided by Benita Westerlund-Wilkstrom (p5′UTR, pMCS3′UTR, and MKS12) and Luis Angel (pEHLYA2-SD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Perry Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanan, N., Khan, M. & Chou, C.P. Enhancing functional expression of heterologous lipase B in Escherichia coli by extracellular secretion. J Ind Microbiol Biotechnol 37, 349–361 (2010). https://doi.org/10.1007/s10295-009-0680-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0680-2

Keywords

Navigation