Skip to main content
Log in

The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin fromEscherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

As a first step in the detailed analysis of the mechanism of secretion of haemolysin, we sought to identify sequences or domains within haemolysin A (HlyA) that are essential for its secretion. For this purpose we examined the properties of a deletion and Tn5 insertions into the region of theHlyA gene encoding the C-terminal part of the protein, since both of these are relatively simple to generate. We showed that removal of 27 amino acids from the C-terminus of HlyA is sufficient to inhibit secretion drastically, although the residual polypeptide is still haemolytically active. Cellular fractionation studies showed that haemolytic activity does not accumulate in large amounts within the periplasmic space during normal secretion. More significantly, activity does not appear to accumulate within this compartment when the export functionshlyB andhlyD are removed. These results are consistent with a mechanism in which interaction of the C-terminus of HlyA with the secretion machinery, located in the inner membrane, is followed by direct transfer of haemolysin to the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhakdi S, Mackman N, Nicaud J-M, Holland IB (1986)Escherichia coli haemolysin damages target cell membranes by generating transmembrane pores. Infect Immun 52:63–69

    PubMed  CAS  Google Scholar 

  • Chang A, Cohen S (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    PubMed  CAS  Google Scholar 

  • Felmlee T, Pellet S, Lee E-Y, Welch R (1985a)Escherichia coli haemolysin is released extracellularly without cleavage of a signal peptide J Bacteriol 163:88–93

    PubMed  CAS  Google Scholar 

  • Felmlee T, Pellet S, Welch R (1985b) Nucleotide sequence of anEscherichia coli chromosomal haemolysin. J Bacteriol 163:94–105

    PubMed  CAS  Google Scholar 

  • Garnier J, Osguthorpe D, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120

    Article  PubMed  CAS  Google Scholar 

  • Hartlein M, Schiessl S, Wagner W, Rdest U, Kreft J, Goebel W (1983) Transport of haemolysin byEscherichia coli J Cell Biochem 22:87–97

    Article  PubMed  CAS  Google Scholar 

  • Higgins C, Hiles I, Whalley K, Jamieson D (1985) Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J 4:1033–1040

    PubMed  CAS  Google Scholar 

  • Jackson M, Pratt J, Holland IB (1986) Intermediates in the assembly of the TonA polypeptide into the outer membrane ofEscherichia coli K12. J Mol Biol 189:477–486

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle R (1982) A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Larsen J, Gerdes K, Light J, Molin S (1984) Low-copy-number plasmid-cloning vectors amplifiable by derepression of an inserted foreign promoter. Gene 28:45–54

    Article  PubMed  CAS  Google Scholar 

  • Mackman N, Holland IB (1984a) Secretion of a 107 Kd polypeptide into the medium from a haemolyticEscherichia coli K12 strain. Mol Gen Genet 193:312–315

    Article  PubMed  CAS  Google Scholar 

  • Mackman N, Holland IB (1984b) Functional characterization of a cloned haemolysin determinant fromEscherichia coli of human origin, encoding information for the secretion of a 107 Kd polypeptide. Mol Gen Genet 196:129–134

    Article  PubMed  CAS  Google Scholar 

  • Mackman N, Nicaud J-M, Gray L, Holland IB (1985a) Genetical and functional organisation of theEscherichia coli determinant 2001. Mol Gen Genet 201:282–288

    Article  PubMed  CAS  Google Scholar 

  • Mackman N, Nicaud J-M, Gray L, Holland IB (1985b) Identification of polypeptides required for the export of haemolysin 2001 fromEscherichia coli. Mol Gen Genet 201:529–536

    Article  PubMed  CAS  Google Scholar 

  • Mackman N, Nicaud J-M, Gray L, Holland IB (1986) Secretion of haemolysin byEscherichia coli. Curr Top Microbiol Immunol 125:159–181

    PubMed  CAS  Google Scholar 

  • Nicaud J-M, Mackman N, Gray L, Holland IB (1985a) Regulation of haemolysin synthesis inEscherichia coli determined by Hly genes of human origin. Mol Gen Genet 199:111–116

    Article  PubMed  CAS  Google Scholar 

  • Nicaud J-M, Mackman N, Gray L, Holland IB (1985b) Characterization of HlyC and mechanism of activation and secretion of haemolysin fromEscherichia coli 2001. FEBS Lett 187:339–344

    Article  PubMed  CAS  Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligodeoxynucleotide directed mutagenesis. Gene 26:101–106

    Article  PubMed  CAS  Google Scholar 

  • Nossal N, Heppel L (1966) The release of enzymes by osmotic shock fromEscherichia coli in exponential phase. J Biol Chem 241:3055–3062

    PubMed  CAS  Google Scholar 

  • O'Callaghan C, Morris A, Kirby S, Shingler A (1972) Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1:283–288

    PubMed  Google Scholar 

  • Peden K (1983) Revised sequence of the tetracycline-resistance gene of pBR322. Gene 22:277–280

    Article  PubMed  CAS  Google Scholar 

  • Pugsley A, Schwartz M (1985) Export and secretion of proteins by bacteria, FEMS Microbiol Rev 32:3–38

    CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Silhavy T, Benson S, Emr S (1983) Mechanisms of protein localization. Microbiol Rev 47:313–344

    PubMed  CAS  Google Scholar 

  • Stoker N, Pratt J, Spratt B (1983) Identification of therodA gene product ofEscherichia coli. J Bacteriol 155:854–859

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

  • Zabala J, Garcia-Lobo J, Diaz-Aroca E, de la Cruz F, Ortitz J (1984)Escherichia coli α-haemolysin synthesis and export genes are flanked by a direct repetition of IS91-like elements. Mol Gen Genet 197:90–97

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Lengeler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, L., Mackman, N., Nicaud, J.M. et al. The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin fromEscherichia coli . Molec. Gen. Genet. 205, 127–133 (1986). https://doi.org/10.1007/BF02428042

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428042

Key words

Navigation