Skip to main content
Log in

Heterologous expression of lipase in Escherichia coli is limited by folding and disulfide bond formation

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Functional expression of lipase B from Pseudozyma antarctica (PalB) in the cytoplasm of Escherichia coli BL21(DE3) and its mutant derivative Origami B(DE3) was explored. Coexpression of DsbA was found to be effective in enhancing PalB expression. The improvement was particularly pronounced with Origami B(DE3) as a host, suggesting that both folding and disulfide bond formation may be major factors limiting PalB expression. Fusion tag technique was also explored by constructing several PalB fusions for the evaluation of their expression performance. While the solubility was enhanced for most PalB fusions, only the DsbA tag was effective in boosting PalB activity, possibly by both enhanced solubility and correct disulfide bond formation. Our results suggest that PalB activity is closely associated with correct disulfide bond formation, and increased solubilization by PalB fusions does not necessarily result in activity enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123

    Article  CAS  Google Scholar 

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  Google Scholar 

  • Bardwell JCA (1994) Building bridges: disulphide bond formation in the cell. Mol Microbiol 14:199–205

    Article  CAS  Google Scholar 

  • Blank K, Morfill J, Gumpp HEGH (2006) Functional expression of Candida antarctica lipase B in Escherichia coli. J Biotechnol 125:474–483

    Article  CAS  Google Scholar 

  • Busso D, Delagoutte-Busso B, Moras D (2005) Construction of a set Gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli. Anal Biochem 343:313–321

    Article  CAS  Google Scholar 

  • Chatterjee DK, Esposito D (2005) Enhanced soluble protein expression using two new fusion tags. Protein Expr Purif 46:122–129

    Article  CAS  Google Scholar 

  • Chou CP (2007) Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 76:521–532

    Article  CAS  Google Scholar 

  • Collins-Racie LA, McColgan JM, Grant KL, DiBlasio-Smith EA, McCoy JM, LaVallie ER (1995) Production of recombinant bovine enterokinase catalytic subunit in Escherichia coli using the novel secretory fusion partner DsbA. Nat Biotechnol 13:982–987

    Article  CAS  Google Scholar 

  • Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262:1744–1747

    Article  CAS  Google Scholar 

  • Dong H, Xu X, Deng M, Yu X, Zhao H, Song H, Geng Y (2007) Expression and bioactivity of recombinant segments of human perforin. Biochem Cell Biol 85:203–208

    Article  CAS  Google Scholar 

  • Fan CF, Zeng RH, Sun CY, Mei XG, Wang YF, Liu Y (2004) Fusion of DsbA to the N-terminus of CTL chimeric epitope, F/M2:81-95, of respiratory syncytical virus prolongs protein- and virus-specific CTL responses in Balb/c mice. Vaccine 23:2869–2875

    Article  CAS  Google Scholar 

  • Hoegh I, Patkar S, Halkier T, Hansen M (1995) Two lipases from Candida antarctica: cloning and expression in Aspergillus oryzae. Can J Bot 73:S869–875

    Article  CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  Google Scholar 

  • Jeong K, Jas YL (2000) Secretory production of human leptin in Escherichia coli. Biotechnol Bioeng 67:398–407

    Article  CAS  Google Scholar 

  • Joly JC, Leung WS, Swartz JR (1998) Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci U S A 95:2773–2777

    Article  CAS  Google Scholar 

  • Kadokura H, Katzen F, Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72:111–135

    Article  CAS  Google Scholar 

  • Kok RG, Christoffels M, Vosman B, Hellingwerf KJ (1993) Growth-phase-dependent expression of the lipolytic system of Acinetobacter calcoaceticus BD413: cloning of a gene encoding one of the esterases. J Gen Microbiol 139:2329–2342

    Article  CAS  Google Scholar 

  • Linko YY, Lamsa M, Wu XY, Uosukainen E, Seppala J, Linko P (1998) Biodegradable products by lipase biocatalysis. J Biotechnol 66:41–50

    Article  CAS  Google Scholar 

  • Liu D, Schmid RD, Rusnak M (2006) Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm—a screening system for a frequently used biocatalyst. Appl Microbiol Biotechnol 72:1024–1032

    Article  CAS  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    Article  CAS  Google Scholar 

  • Messens J, Collet J-F, Belle KV, Brosens E, Loris R, Wyns L (2007) The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282:31302–31307

    Article  CAS  Google Scholar 

  • Nishihara K, Kanemori M, Yanagi H, Yura T (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889

    Article  CAS  Google Scholar 

  • Perez-Perez J, Gutierrez J (1995) An arabinose-inducible expression vector, pAR3, compatible with ColE1-derived plasmids. Gene 158:141–142

    Article  CAS  Google Scholar 

  • Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Article  CAS  Google Scholar 

  • Rotticci D, Rotticci-Mulder JC, Denman S, Norin T, Hult K (2001) Improved enantioselectivity of a lipase by rational protein engineering. ChemBioChem 2:766–770

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York, USA

    Google Scholar 

  • Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  Google Scholar 

  • Tzvetkov N, Breuer P, Boteva R (2006) Cysteine-free glutathione-S-tranferase as a tool for thiol-specific labeling of proteins. BioTechniques 40:145–146

    Article  CAS  Google Scholar 

  • Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320

    Article  CAS  Google Scholar 

  • Winter J, Neubauer P, Glockshuber R, Rudolph R (2000) Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J Biotechnol 84:175–185

    Article  CAS  Google Scholar 

  • Zhang Y, Olsen DR, Nguyen KB, Olson PS, Rhodes ET, Mascarenhas D (1998) Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expr Purif 12:159–165

    Article  CAS  Google Scholar 

  • Zhang N, Suen WC, Windsor W, Xiao L, Madison V, Zaks A (2003) Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 16:599–605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Research Chair (CRC) program. We thank Deb K. Chatterjee, Didier Busso, Nikolay K. Tzvetkov, and EMBL for providing various vectors in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Perry Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Yasin, A., Tang, R. et al. Heterologous expression of lipase in Escherichia coli is limited by folding and disulfide bond formation. Appl Microbiol Biotechnol 81, 79–87 (2008). https://doi.org/10.1007/s00253-008-1644-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1644-6

Keywords

Navigation