Skip to main content
Log in

Reductive dehalogenation as a respiratory process

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Anaerobic bacteria can reductively dehalogenate aliphatic and aromatic halogenated compounds in a respiratory process. Only a few of these bacteria have been isolated in pure cultures. However, long acclimation periods, substrate specificity, high dehalogenation rates, and the possibility to enrich for the dehalogenation activity by subcultivation in media containing an electron donor indicate that many of the reductive dehalogenations in the environment are catalyzed by specific bacteria. Molecular hydrogen or formate appear to be good electron donors for the enrichment of such organisms. Furthermore, systems have to be employed which supply the cultures with the halogenated compounds beyond their toxicity level. All bacteria that are presently available in pure culture and grow with a halogenated compound as electron acceptor are members of new genera. Based on experimental results with the membrane-impermeable electron mediator methyl viologen, a model of the respiration system ofDehalobacter restrictus, a tetrachloroethene-dechlorinating bacterium, is presented. Further studies of the biochemistry and energetics of respiratory-dehalogenating strains will help to understand the mechanisms involved and perhaps reveal the evolutionary origin of the dehalogenating enzyme systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCE:

tetrachloroethene

TCE:

trichloroethene

cis-1,2-DCE:

cis-1,2-dichloroethene

PCER:

tetrachloroethene reductase

References

  • Belay N & Daniels L (1987) Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl. Environ. Microbiol. 53: 1604–1610

    Google Scholar 

  • Beurskens JEM, Dekker CGC, Heuvel H van den, Swart M, Wolf J de & Dolfing J (1994) Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selectively mediates the thermodynamic most favorable reactions. Environ. Sci. Technol. 28: 701–706

    Google Scholar 

  • Bosma TNP, Meer JR van der, Schraa G, Tros ME & Zehnder AJB (1988) Reductive dechlorination of all trichloro-and dichlorobenzene isomers. FEMS Microbiol. Lett. 53: 223–229

    Google Scholar 

  • Bowser P, DiStefano T, Tandoi V, Gossett J & Zinder SH (1993) Characterization of an anaerobic enrichment culture which rapidly converts tetrachloroethene to ethene. Abstr. Q194, p. 381, Abstr. 93rd Ann. Meet. Am. Soc. Microbiol. May 1993. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Boyle AW, Blake CK, Price WA & May HD (1993) Effects of polychlorinated biphenyl congener concentration and sediment supplementation on rates of methanogenesis and 2,3,6-trichlorobiphenyl dechlorination in an anaerobic enrichment. Appl. Environ. Microbiol. 59: 3027–3031

    Google Scholar 

  • Bruin WP de, Kotterman MJJ, Posthumus MA, Schraa G & Zehnder AJB (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl. Environ. Microbiol. 58: 1996–2000

    Google Scholar 

  • Castro CE, Wade RS & Belser NO (1985) Biodehalogenation: Reactions of cytochrome P-450 with polyhalomethanes. Biochemistry 24: 204–210

    Google Scholar 

  • Cole JR, Foxworthy AL & Tiedje JM (1992) Isolation and characterization of a bacterium growing by anaerobic reductive dehalogenation of 2-chlorophenol. Abstr. 9, p. 10. Abstr. ASM Conference Anaerobic Dehalogenation and Its Environmental Implications. September 1992, Athens, Georgia

  • Criddle CS, DeWitt JT & McCarty PL (1990) Reductive dechlorination of carbon tetrachloride byEscherichia coli K-12. Appl. Environ. Microbiol. 56: 3247–3254

    Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR & Suflita JM (1990)Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30

    Google Scholar 

  • DeWeerd KA & Suflita JM (1990) Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of ‘Desulfomonile tiedjei’. Appl. Environ. Microbiol. 56: 2999–3005

    Google Scholar 

  • DiStefano TD, Gossett JM & Zinder SH (1991) Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl. Environ. Microbiol. 57: 2287–2292

    Google Scholar 

  • —— (1992) Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58: 3622–3629

    Google Scholar 

  • Dolfing J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch. Microbiol. 153: 264–266

    Google Scholar 

  • Dolfing J & Harrison BK (1992) Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environ. Sci. Technol. 26: 2213–2218

    Google Scholar 

  • Dolfing J & Janssen DB (1994) Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation 5: 21–28

    Google Scholar 

  • Dolfing J & Tiedje JM (1986) Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol. Ecol. 38: 293–298

    Google Scholar 

  • Egli C, Scholtz R, Cook AM & Leisinger T (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures ofDesulfobacterium sp. andMethanobacterium sp. FEMS Microbiol. Lett. 43: 257–261

    Google Scholar 

  • Egli C, Tschan T, Scholtz R, Cook AM & Leisinger T (1988) Transformation of tetrachloromethane to dichloromethane and carbon dioxide byAcetobacterium woodii. Appl. Environ. Microbiol. 54: 2819–2824

    Google Scholar 

  • Fathepure BZ, Nengu JP & Boyd SA (1987) Anaerobic bacteria that dechlorinate perchloroethene. Appl. Environ. Microbiol. 53: 2671–2674

    Google Scholar 

  • Fathepure BZ, Tiedje JM & Boyd SA (1988) Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl. Environ. Microbiol. 54: 327–330

    Google Scholar 

  • Fathepure BZ & Vogel TM (1991) Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Environ. Microbiol. 57: 3418–3422

    Google Scholar 

  • Gälli R & McCarty PL (1989) Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by aClostridium sp. Appl. Environ. Microbiol. 55: 837–844

    Google Scholar 

  • Heijman CG, Holliger C, Glaus MA, Schwarzenbach RP & Zeyer J (1993) Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59: 4350–4353

    Google Scholar 

  • Holliger C (1992) Reductive dehalogenation by anaerobic bacteria. PhD Thesis, Wageningen Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • Holliger C & Schraa G (1994) Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria. FEMS Microbiol. Rev. (in press)

  • Holliger C, Schraa G, Stams AJM & Zehnder AJB (1990) Reductive dechlorination of 1,2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteria. Biodegradation 1: 253–261

    Google Scholar 

  • Holliger C, Schraa G, Stams AJM & Zehnder AJB (1992) Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl. Environ. Microbiol. 58: 1636–1644

    Google Scholar 

  • —— (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 59: 2991–2997

    Google Scholar 

  • Jagnow G & Haider KEPC (1977) Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch. Microbiol. 115: 285–292

    Google Scholar 

  • Jones RW & Garland PB (1977) Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes ofEscherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem. J. 164: 199–211

    Google Scholar 

  • Konings WN, Poolman B & Veen HW van (1994) Solute transport and energy transduction in bacteria. Antonie van Leeuwenhoek (in press)

  • Kriegman-King MR & Reinhard M (1992) Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite. Environ. Sci. Technol. 26: 2198–2206

    Google Scholar 

  • Kuhn EP & Suflita JM (1989) Dehalogenation of pesticides by anaerobic microorganisms in soils and groundwater — a review. In: Sawhnew BL & Brown K (Eds) Reactions and Movement of Organic Chemicals in Soils (pp 111–180) Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, U.S.A.

    Google Scholar 

  • Macalady DL, Tratnyek PG & Grundl TJ (1986) Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: a critical review. J. Contam. Hydrol. 1: 1–28

    Google Scholar 

  • MacRae IC, Raghu KL & Bautista EM (1969) Anaerobic degradation of the insecticide lindane byClostridium sp. Nature 221: 859–860

    Google Scholar 

  • Madsen T & Licht D (1992) Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl. Environ. Microbiol. 158: 2874–2878

    Google Scholar 

  • Mikesell MD, Boyd S & Boyd A (1990) Dechlorination of chloroform byMethanosarcina strains. Appl. Environ. Microbiol. 56: 1198–1201

    Google Scholar 

  • Mohn WW & Tiedje JM (1990) Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch. Microbiol. 153: 267–271

    Google Scholar 

  • —— (1991) Evidence for chemoosmotic coupling of reductive dechlorination and ATP synthesis inDesulfomonile tiedjei. Arch. Microbiol. 157: 1–6

    Google Scholar 

  • —— (1992) Microbial reductive dehalogenation. Microbiol. Rev. 56: 482–507

    Google Scholar 

  • Mousa MA & Rogers JE (1990) Dechlorination of hexachlorobenzene in two freshwater pond sediments under methanogenic conditions. Q-45, PG: 296, Abstr. Ann. Meet. Amer. Soc. Microbiol., Anaheim, CA, May

  • Neumann A, Scholz-Muramatsu H & Diekert G (1994) Tetrachloroethene dechlorination tocis-1,2-dichloroethene in cell suspensions and cell extracts ofDehalospirillum multivorans spec. nov. Abstr. P405, Frühjahrstagung der VAAM, March 1994, Hannover, Germany. BioEngineering 2/94: 82

    Google Scholar 

  • Picardal FW, Arnold RG, Couch H, Little AM & Smith ME (1993) Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane byShewanella putrefaciens 200. Appl. Environ. Microbiol. 59: 3763–3770

    Google Scholar 

  • Ramanand K, Balba MT & Duffy J (1993) Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions. Appl. Environ. Microbiol. 59: 3266–3272

    Google Scholar 

  • Rhee GY, Sokol RC, Bethoney CM & Bush B (1993) Dechlorination of polychlorinated biphenyls by Hudson River sediment organisms: specificity to the chlorination pattern of congeners. Environ. Sci. Technol. 27: 1190–1192

    Google Scholar 

  • Scholz-Muramatsu H, Szewzyk R, Szewzyk U & Gaiser S (1990) Tetrachloroethylene as electron acceptor for the anaerobic degradation of benzoate. FEMS Microbiol. Lett. 66: 81–86

    Google Scholar 

  • Scharzenbach RP, Stierli R, Lanz K & Zeyer J (1990) Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environ. Sci. Technol. 24: 1566–1574

    Google Scholar 

  • Shelton DR & Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48: 840–848

    Google Scholar 

  • Stouthamer AG (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR (Ed) International Review of Biochemistry, Microbial Biochemistry. (pp 1–47) Vol. 21. University Park Press, Baltimore, U.S.A.

    Google Scholar 

  • Tsuchiya T & Yamaha T (1984) Reductive dechlorination of 1,2,4-trichlorobenzene byStaphylococcus epidermidis isolated from intestinal contents of rats. Agric. Biol. Chem. 48: 1545–1550

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holliger, C., Schumacher, W. Reductive dehalogenation as a respiratory process. Antonie van Leeuwenhoek 66, 239–246 (1994). https://doi.org/10.1007/BF00871642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871642

Key words

Navigation