Skip to main content
Log in

Quantitative contributions of bacteria and of Deinococcus geothermalis to deposits and slimes in paper industry

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Deinococcus geothermalis has frequently been isolated from pink colored deposits of paper industry processes. Laboratory studies have shown that D. geothermalis is capable of forming on nonliving surfaces patchy biofilms that are resistant to adverse agents such as extreme pH, desiccation, solubilising detergents and biocides. This study was done to quantitatively assess the role of D. geothermalis as a biofouler in paper industry. Colored deposits were collected from 24 European and North American paper and board machines and the densities of the bacterial 16S rRNA genes and those of the red slime producers D. geothermalis and Meiothermus spp. were measured by QPCR (quantitative real time PCR). D. geothermalis was found at nine machines, usually from splash area deposits, but its contribution was minor, 0.001–1%, to the total bacterial burden of 8.3 to log 10.5 log units per gram wet-weight of the deposits. When D. geothermalis was found in a measurable quantity, Meiothermus spp. also was found, often in bulk quantity (7–100% of the total bacteria). The data are in line with the properties of D. geothermalis known from laboratory biofilm studies, indicating this species is a pioneer coloniser of machine surfaces and may help other bacteria to adhere and grown into biofilms, rather than competing with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Appling JW, Cruickshank GA, DeLong RF, Herschler RJ, Humiston CG, Martin RB, Sanborn JR, Shema BF, Wiley AJ (1955). Microbiology of pulp and paper. Tappi Monograph series No. 15

  2. Claus G, Müller R (1996) Biofilms in a paper mill process water system. In: Heitz E, Flemming HC, Sand W (eds) Microbially influenced corrosion of materials. Springer, Berlin, pp 429–437

    Google Scholar 

  3. Costerton JW (2007) The biofilm primer. Springer, Berlin, pp 36–43

    Google Scholar 

  4. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A et al (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028. doi:10.1126/science.1103185

    Article  PubMed  CAS  Google Scholar 

  5. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. doi:10.1093/nar/17.19.7843

    Article  PubMed  CAS  Google Scholar 

  6. Ekman J, Kosonen M, Jokela S, Kolari M, Korhonen P, Salkinoja-Salonen M (2007) Detection and quantitation of colored deposit-forming Meiothermus spp. in paper industry processes and end products. J Ind Microbiol Biotechnol 34:203–211. doi:10.1007/s10295-006-0187-z

    Article  PubMed  CAS  Google Scholar 

  7. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J et al (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947

    Article  PubMed  CAS  Google Scholar 

  8. Ghannoum M, O’Toole GA (2004) Microbial biofilms. ASM Press, Washington DC, pp 64–295

    Google Scholar 

  9. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. doi:10.1038/nrmicro821

    Article  PubMed  CAS  Google Scholar 

  10. Ingraham JL, Maaløe O, Neidhardt FC (1983) Growth of the bacterial cell. Sinauer Associates Inc., Sunderland, p 3

    Google Scholar 

  11. Kanto Öqvist L (2008). Microbial life and deposits in paper machine circuits. PhD thesis, Helsinki University. Dissertations bioscientiarum molecularium Universitatis Helsingiensis Viikki 20/2008 (http://ethesis.helsinki.fi), Helsinki Finland. p 37

  12. Kolari M, Nuutinen J, Rainey FA, Salkinoja-Salonen MS (2003) Colored moderately thermophilic bacteria in paper-machine biofilms. J Ind Microbiol Biotechnol 30:225–238. doi:10.1007/s10295-003-0047-z

    PubMed  CAS  Google Scholar 

  13. Kolari M, Nuutinen J, Salkinoja-Salonen MS (2001) Mechanisms of biofilm formation in paper machine by bacillus species: The role of Deinococcus geothermalis. J Ind Microbiol Biotechnol 27:343–351. doi:10.1038/sj/jim/7000201

    Article  PubMed  CAS  Google Scholar 

  14. Kolari M, Schmidt U, Kuismanen E, Salkinoja-Salonen MS (2002) Firm but slippery attachment of Deinococcus geothermalis. J Bacteriol 184:2473–2480. doi:10.1128/JB.184.9.2473-2480.2002

    Article  PubMed  CAS  Google Scholar 

  15. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. doi:10.1093/nar/gkh293

  16. Maaløe O, Kjelgaard NO (1966) Control of macromolecular synthesis. WA Benjamin Inc., New York, p 62

    Google Scholar 

  17. Mack D, Davies AP, Harris LG, Rohde H, Horstkotte MA, Knobloch JK (2007) Microbial interactions in Staphylococcus epidermidis biofilms. Anal Bioanal Chem 387:399–408. doi:10.1007/s00216-006-0745-2

    Article  PubMed  CAS  Google Scholar 

  18. Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M et al (2007) Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One 2:e955. doi:10.1371/journal.pone.0000955

  19. Masurat P, Fru EC, Pedersen K (2005) Identification of Meiothermus as the dominant genus in a storage system for spent nuclear fuel. J Appl Microbiol 98:727–740. doi:10.1111/j.1365-2672.2004.02519.x

    Article  PubMed  CAS  Google Scholar 

  20. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    PubMed  CAS  Google Scholar 

  21. Nobre MF, da Costa MS (2001) Genus Meiothermus. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin

    Google Scholar 

  22. Peltola M, Neu TR, Raulio M, Kolari M, Salkinoja-Salonen MS (2008) Architecture of Deinococcus geothermalis biofilms on glass and steel: a lectin study. Environ Microbiol. doi:10.1111/j.1462-2920.2008.01596.x

  23. Pirttijärvi TS, Andersson MA, Salkinoja-Salonen MS (2000) Properties of Bacillus cereus and other bacilli contaminating biomaterial-based industrial processes. Int J Food Microbiol 60:231–239. doi:10.1016/S0168-1605(00)00313-5

    Article  PubMed  Google Scholar 

  24. Pleckaityte M, Mistiniene E, Michailoviene V, Zvirblis G (2003) Identification and characterization of a Hsp70 (DnaK) chaperone system from Meiothermus ruber. Mol Genet Genomics 269:109–115. doi:10.1007/s00438-003-0818-2

    PubMed  CAS  Google Scholar 

  25. Priha O, Hallamaa K, Saarela M, Raaska L (2004) Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR. J Ind Microbiol Biotechnol 31:161–169. doi:10.1007/s10295-004-0125-x

    Article  PubMed  CAS  Google Scholar 

  26. Raulio M, Järn M, Ahola J, Peltonen J, Rosenholm JB, Tervakangas S et al (2008) Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods. J Ind Microbiol Biotechnol. doi:10.1007/s10295-008-0343-8

  27. Saarimaa C, Peltola M, Raulio M, Neu TR, Salkinoja-Salonen MS, Neubauer P (2006) Characterization of adhesion threads of Deinococcus geothermalis as type IV pili. J Bacteriol 188:7016–7021. doi:10.1128/JB.00608-06

    Article  PubMed  CAS  Google Scholar 

  28. Sanborn JR (1933) Development and control of microorganisms in a pulp and paper mill system. J Bacteriol 26:373–378

    PubMed  CAS  Google Scholar 

  29. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S, Alam M et al (2008) Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol. doi:10.1111/j.1462-2920.2008.01621.x

  30. Väisänen OM, Weber A, Bennasar A, Rainey FA, Busse HJ, Salkinoja-Salonen MS (1998) Microbial communities of printing paper machines. J Appl Microbiol 84:1069–1084. doi:10.1046/j.1365-2672.1998.00447.x

    Article  PubMed  Google Scholar 

  31. Väisänen OM, Elo S, Marmo SA, Salkinoja-Salonen M (1989) Enzymatic characterization of Bacilli from food packing paper and board machines. J Ind Microbiol 4:419–428. doi:10.1007/BF01569637

    Article  Google Scholar 

  32. Väisänen OM, Mwaisumo NJ, Salkinoja-Salonen MS (1991) Differentiation of dairy strains of the Bacillus cereus group by phage typing, minimum growth temperature, and fatty acid analysis. J Appl Bacteriol 70:315–324

    PubMed  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Academy of Finland (53305) and the Photobiomics grant (18637) and TEKES Läiskä project (1364/31/05), PhD fellowships and other support from ABS (M.P.) and EnSTe (J.E, C.KÖ) graduate schools are highly acknowledged. We thank the Viikki Science Library and the Faculty Instrument Centre for expert services and Leena Steininger, Hannele Tukiainen and Tuula Suortti for many kinds of help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Peltola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peltola, M., Kanto Öqvist, C., Ekman, J. et al. Quantitative contributions of bacteria and of Deinococcus geothermalis to deposits and slimes in paper industry. J Ind Microbiol Biotechnol 35, 1651–1657 (2008). https://doi.org/10.1007/s10295-008-0409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0409-7

Keywords

Navigation