Skip to main content
Log in

Improving conjugation efficacy of Sorangium cellulosum by the addition of dual selection antibiotics

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The conjugation protocols in myxobacterium Sorangium cellulosum are often inapplicable due to the strain-specific sensitivity to the presence of Escherichia coli cells or the resistances to many antibiotics. Here we report that the conjugative transfer of the mobilizable plasmid pCVD442 from E. coli DH5α (λ pir) to Sorangium strains could be greatly increased by the presence of low doses of dual selection antibiotics in the mating medium. The improvement was efficient in either E. coli-tolerant or sensitive Sorangium strains. For those phleomycin and hygromycin tolerant Sorangium strains, chloramphenicol-resistance gene was developed as a new selectable marker by driving the resistance gene with the aphII promoter. Using the improved protocol, the epothilone biosynthetic pathway was inactivated by an insertion mutation in the biosynthetic genes of the producing Sorangium strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shimkets LJ (1990) Social and developmental biology of myxobacteria. Microbiol Rev 54:473–501

    PubMed  CAS  Google Scholar 

  2. Reichenbach H, Höfle G (1993) Production of bioactive secondary metabolites. In: Dworkin M, Kaiser D (eds) Myxobacteria II. American Society for Microbiology, Washington DC, pp 347–397

    Google Scholar 

  3. Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA et al (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 103:15200–15205. doi:10.1073/pnas.0607335103

    Article  PubMed  CAS  Google Scholar 

  4. Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO et al (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289. doi:10.1038/nbt1354

    Article  PubMed  CAS  Google Scholar 

  5. Kaiser D (1991) Genetic systems in myxobacteria. Methods Enzymol 204:357–372. doi:10.1016/0076-6879(91)04018-J

    Article  PubMed  CAS  Google Scholar 

  6. Kashefi K, Hartzell PL (1995) Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF- defect. Mol Microbiol 15:483–494. doi:10.1111/j.1365-2958.1995.tb02262.x

    Article  PubMed  CAS  Google Scholar 

  7. Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253. doi:10.1016/j.jbiotec.2003.07.015

    Article  PubMed  CAS  Google Scholar 

  8. Julien B, Fehd R (2003) Development of a mariner-based transposon for use in Sorangium cellulosum. Appl Environ Microbiol 69:6299–6301. doi:10.1128/AEM.69.10.6299-6301.2003

    Article  PubMed  CAS  Google Scholar 

  9. Jaoua S, Neff S, Schupp T (1992) Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. Plasmid 28:157–165. doi:10.1016/0147-619X(92)90046-D

    Article  PubMed  CAS  Google Scholar 

  10. Kopp M, Irschik H, Gross F, Perlova O, Sandmann A, Gerth K et al (2004) Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol 107:29–40. doi:10.1016/j.jbiotec.2003.09.013

    Article  PubMed  CAS  Google Scholar 

  11. Zirkle R, Ligon JM, Molnar I (2004) Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiology 150:2761–2774. doi:10.1099/mic.0.27138-0

    Article  PubMed  CAS  Google Scholar 

  12. Reichenbach H, Dworkin M (1992) The myxobacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer-Verlag, New York, pp 3416–3487

    Google Scholar 

  13. Schupp T, Toupet C, Cluzel B, Neff S, Hill S, Beck JJ et al (1995) A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J Bacteriol 177:3673–3679

    PubMed  CAS  Google Scholar 

  14. Molnár I, Schupp T, Ono M, Zirkle R, Milnamow M, Nowak-Thompson B et al (2000) The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem Biol 7:97–109. doi:10.1016/S1074-5521(00)00075-2

    Article  PubMed  Google Scholar 

  15. Pradella S, Hans A, Spröer C, Reichenbach H, Gerth K, Beyer S (2002) Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol 178:484–492. doi:10.1007/s00203-002-0479-2

    Article  PubMed  CAS  Google Scholar 

  16. Bode HB, Müller R (2006) Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol 33:577–588. doi:10.1007/s10295-006-0082-7

    Article  PubMed  CAS  Google Scholar 

  17. Li ZF, Zhao JY, Xia ZJ, Shi J, Liu H, Wu ZH et al (2007) Evolutionary diversity of ketoacyl synthases in cellulolytic myxobacterium Sorangium. Syst Appl Microbiol 30:189–196. doi:10.1016/j.syapm.2006.06.002

    Article  PubMed  Google Scholar 

  18. Gong GL, Sun X, Liu XL, Hu W, Cao WR, Liu H et al (2007) Mutation and a high-throughput screening method for improving the production of Epothilones of Sorangium. J Ind Microbiol Biotechnol 34:615–623. doi:10.1007/s10295-007-0236-2

    Article  PubMed  CAS  Google Scholar 

  19. Nguimbi E, Li YZ, Gao BL, Li ZF, Wang B, Wu ZH et al (2003) 16S–23S ribosomal DNA intergenic spacer regions in cellulolytic myxobacteria and differentiation of closely related strains. Syst Appl Microbiol 26:262–268. doi:10.1078/072320203322346119

    Article  PubMed  CAS  Google Scholar 

  20. Gill RI, Shimkets LJ (1993) Genetic approaches for analysis of myxobacterial behavior. In: Dworkin M, Kaiser D (eds) Myxobacteria II. American Society of Microbiology, Washington DC, pp 129–155

    Google Scholar 

  21. Hu W, Dong H, Li YZ, Hu XT, Han GJ, Qu YB (2004) A high-throughput model for screening anti-tumor agents capable of promoting polymerization of tubulin in vitro. Acta Pharmacol Sin 25:775–782

    PubMed  CAS  Google Scholar 

  22. Dong H, Li YZ, Hu W (2004) Analysis of purified tubulin in high concentration of glutamate for application in high throughput screening for microtubule-stabilizing agents. Assay Drug Dev Technol 2:621–628. doi:10.1089/adt.2004.2.62

    Article  PubMed  CAS  Google Scholar 

  23. Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 99:17025–17030. doi:10.1073/pnas.252607699

    Article  PubMed  CAS  Google Scholar 

  24. Yim G, de la Cruz F, Spiegelman GB, Davies J (2006) Transcription modulation of Salmonella enterica serovar Typhimurium promoters by sub-MIC levels of rifampin. J Bacteriol 188:7988–7991. doi:10.1128/JB.00791-06

    Article  PubMed  CAS  Google Scholar 

  25. Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89–92. doi:10.1126/science.1127912

    Article  PubMed  CAS  Google Scholar 

  26. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652. doi:10.1073/pnas.76.4.1648

    Article  PubMed  CAS  Google Scholar 

  27. Donnenberg MS, Kaper JB (1991) Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59:4310–4317

    PubMed  CAS  Google Scholar 

  28. Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791. doi:10.1038/nbt1183-784

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by grants 39870003, 30270023, 30370792, and 30400009 from the Chinese National Natural Science Foundation. Thanks to Dr. Edward C. Mignot of Shandong University for linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Zhong Li.

Additional information

Z.-J. Xia and J. Wang contributes equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, ZJ., Wang, J., Hu, W. et al. Improving conjugation efficacy of Sorangium cellulosum by the addition of dual selection antibiotics. J Ind Microbiol Biotechnol 35, 1157–1163 (2008). https://doi.org/10.1007/s10295-008-0395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0395-9

Keywords

Navigation