Skip to main content

A Novel System to Selective Tagging of Sinorhizobium fredii Symbiotic Plasmids

  • Protocol
  • First Online:
Host-Pathogen Interactions

Abstract

Conventional systems used to tag and transfer symbiotic plasmids (pSyms) of rhizobial strains are based in mutagenesis with transposons. In those processes, numerous clones must be analyzed to find one of them with the transposon inserted in the pSym. Following this strategy, the insertion might interrupt a gene that can affect the symbiotic phenotype of the bacteria tagged. Here, we have developed a new system based in homologous recombination that generates Sinorhizobium fredii strains with pSyms tagged by the insertion of a suicide vector which harbor a truncated copy of S. fredii HH103 nodZ gene, a mob site, and a kanamycin-resistant gene. When it is introduced by conjugation in a S. fredii strain, the vector integrates in pSym by only one recombination event. This pSym tagged can be transferred in matting experiments to other strains in the presence of a helper plasmid. Following this method, we have tagged several strains and transferred their pSyms to a recipient strain demonstrating the potential of this new system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldroyd GE (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  2. Hoykaas PJJ, van Brussel AAN, den Dulk-Ras H et al (1981) Sym plasmid of Rhizobium trifolii expressed in differentrhizobial species and Agrobacterium tumefaciens. Nature 291:351–353

    Article  Google Scholar 

  3. De Jong TM, Brewin NJ, Phillips DA (1981) Effects of plasmid content in rhizobium leguminosarum on pea nodule activity and plant growth. J Gen Microbiol 124:1–7

    Google Scholar 

  4. Brewin NJ, Wood EA, Young JPW (1983) Contribution of the symbiotic plasmid to the competitiveness of Rhizobium leguminosarum. J Gen Microbiol 129:2973–2977

    CAS  Google Scholar 

  5. Djordjevic MA, Zurkowski W, Shine J et al (1983) Sym plasmid transfer to various symbiotic mutants of Rhizobium trifolii, R. leguminosarum and R. meliloti. J Bacteriol 156:1035–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simon R, Priefer U, Pühler A (1983) Vector plasmids for in vivo and in vitro manipulations of Gram-negative bacteria. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Berlin, p 98

    Chapter  Google Scholar 

  7. Simon R (1984) High frequency mobilization of gram-negative bacterial replicons by the in vivo constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420

    Article  CAS  PubMed  Google Scholar 

  8. Simon R, Quandt J, Klipp W (1989) New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram- negative bacteria. Gene 80:161–169

    Article  CAS  PubMed  Google Scholar 

  9. Hynes MF, Quandt J, O’Connell MP et al (1989) Direct selection for curing and deletion of rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene. Gene 78:111–120

    Article  CAS  PubMed  Google Scholar 

  10. Schäfer A, Tauch A, Jäger W et al (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  11. Espuny MR, Ollero FJ, Bellogín RA et al (1987) Transfer of the Rhizobium leguminosarum biovar trifolii plasmid pRtr5a to a strain of Rhizobium sp. that nodulates on Hedysarumcoronarium. J Appl Bacteriol 63:13–20

    Article  CAS  Google Scholar 

  12. Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  13. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noreen S, Schlaman HRM, Bellogín RA et al (2003) Alfalfa nodulation by Sinorhizobium fredii does not require sulfated nod-factors. Func Plant Biol 30:1219–1232

    Article  CAS  Google Scholar 

  15. Buendía-Clavería AM, Chamber M, Ruiz-Sainz JE (1989) A comparative study of the physiological characteristics, plasmid content and symbiotic properties of different Rhizobium frediistrains. Syst Appl Microbiol 12:203–209

    Article  Google Scholar 

  16. Keyser HH, Bohlool BB, Hu TS et al (1982) Fast-growing rhizobia isolated from root nodules of soybean. Science 215:1631–1632

    Article  CAS  PubMed  Google Scholar 

  17. Yang SS, Bellogín RA, Buendía A et al (2001) Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. J Biotechnol 91:243–255

    Article  CAS  PubMed  Google Scholar 

  18. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  19. Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  20. Morrison NA, Hau CY, Trinick MJ (1983) Heat curing of a Sym plasmid in a fast-growing Rhizobium sp. that is able to nodulate legumes and the nonlegume Parasponia sp. J Bacteriol 153:527–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eckardt T (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science and Innovation, grant number PID2019-107634RB-I00, and supported by FEDER funds, grant number FEDER-US 1259948.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cutiño, A.M., del Carmen Sánchez-Aguilar, M., Ruiz-Sáinz, J.E., del Rosario Espuny, M., Ollero, F.J., Medina, C. (2024). A Novel System to Selective Tagging of Sinorhizobium fredii Symbiotic Plasmids. In: Medina, C., López-Baena, F.J. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 2751. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3617-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3617-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3616-9

  • Online ISBN: 978-1-0716-3617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics