Skip to main content
Log in

Analysis of BDS satellite clocks in orbit

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The products of Wuhan University with 5-min sampling are used to analyze the characteristics of BeiDou satellite clocks. Two nanoseconds root-mean-square (RMS) variations are obtained for 1-day quadratic fits in the sub-daily region. The relativistic effects of BDS clocks are also studied. General relativity predicts that linear variation of the semimajor axes of geostationary and inclined geosynchronous satellites causes a quadratic clock drift with a magnitude at the 10−16/day level. The observed drift is higher than what general relativity theory would produce. Several periodic terms are found in the satellite clock variations through spectrum analysis. In order to identify the origin of the BDS clock harmonics, a correlation analysis between the period or amplitude of the harmonics and properties of the satellite orbits is performed. It is found that the period of the harmonics is not exactly equal to the orbit period, but rather the ratio of the orbit period to clock period is almost the same as that of a sidereal day to solar day. The BDS clocks obey white frequency noise statistics for intervals from 300 s to several thousands seconds. For intervals greater than 10,000 s, all the BDS satellites display more complex, non-power-law behavior due to the effects of periodic clock variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • CSNO (2013) BeiDou navigation satellite system signal in space interface control document open service signal (version 2.0). China satellite navigation office Dec 2013

  • Epstein M, Stoll E, Fine J (2001) Observable relativistic frequency steps induced by GPS orbit changes. In: Proceedings of the 33rd annual precise time and time interval (PTTI) systems and applications meeting, Long Beach, California, USA, 27–29 Nov 2001, pp 493–507

  • Gong H, Ni S, Mou W, Zhu X, Wang F (2012) Estimation of COMPASS on-board clock short-term stability. European frequency and time forum (EFTF), 2012, 23–27 April 2012, pp 383–386. doi:10.1109/EFTF.2012.6502407

  • Gong H, Yang W, Sha H, Zhu X, Wang F (2013) Frequency stability estimation of compass on-board clock based on smoothed broadcast ephemeris. European frequency and time forum & international frequency control symposium (EFTF/IFC), 2013 Joint, 21-25 July 2013, pp 289–294. doi:10.1109/EFTF-IFC.2013.6702233

  • Gonzalez Martinez FJ (2013) Performance of new GNSS satellite clocks. KIT Scientific Publishing, Karlsruhe. doi:10.5445/KSP/1000036610

  • Greengard L, Lee J (2004) Accelerating the Nonuniform Fast Fourier Transform. SIAM Rev 46(3):443–454. doi:10.1137/S003614450343200X

    Article  Google Scholar 

  • Han C, Yang Y, Cai Z (2011) BeiDou navigation satellite system and its time scales. Metrologia 48:213–218

    Article  Google Scholar 

  • Hauschild A, Montenbruck O, Sleewaegen J-M, Huisman L, Teunissen PG (2012a) Characterization of compass M-1 signals. GPS Solut 16(1):117–126. doi:10.1007/s10291-011-0210-3

    Article  Google Scholar 

  • Hauschild A, Montenbruck O, Steigenberger P (2012b) Short-term analysis of GNSS clocks. GPS Solut 17(3):295–307. doi:10.1007/s10291-012-0278-4

    Article  Google Scholar 

  • IS-GPS-200G (2013) Global positioning systems directorate system engineering & integration interface specification IS-GPS-200G. Washington, DC, USA

  • Kouba J (2004) Improved relativistic transformations in GPS. GPS Solut 8(3):170–180

    Article  Google Scholar 

  • Lee J-Y, Greengard L (2005) The type 3 nonuniform FFT and its applications. J Comput Phys 206(1):1–5. doi:10.1016/j.jcp.2004.12.004

    Article  Google Scholar 

  • Lou Y, Liu Y, Shi C, Yao X, Zheng F (2014) Precise orbit determination of BeiDou constellation based on BETS and MGEX network. Sci Rep 4. doi:10.1038/srep04692

  • Montenbruck O, Steigenberger P, Schönemann E, Hauschild A, Hugentobler U, Dach R, Becker M (2011) Flight characterization of new generation GNSS satellite clocks. The 24th international technical meeting of the satellite division of The Institute of Navigation (ION GNSS 2011), Portland OR, USA, 21–23 Sep 2011, pp 2959–2969

  • Montenbruck O, Hugentobler U, Dach R, Steigenberger P, Hauschild A (2012) Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solut 16(3):303–313

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. doi:10.1007/s10291-012-0272-x

    Article  Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Rochat P (2010) Onboard atomic clocks in global navigation satellite system. SATW congress 2010, Zurich, Switzerland, November 11

  • Senior KL, Ray JR, Beard RL (2008) Characterization of periodic variations in the GPS satellite clocks. GPS Solut 12(3):211–225

    Article  Google Scholar 

  • Sesia I (2008) Estimating the Allan variance in the presence of long periods of missing data and outliers. Metrologia 45(6). doi:10.1088/0026-1394/45/6/S19

  • Shi C et al (2012) Precise orbit determination of Beidou Satellites with precise positioning. Sci China Earth Sci 55(7):1079–1086. doi:10.1007/s11430-012-4446-8

    Article  Google Scholar 

  • Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 2(3):50–62. doi:10.1007/PL00012757

    Article  Google Scholar 

  • Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of Compass GEO and IGSO satellites. J Geodesy 87(6):515–525. doi:10.1007/s00190-013-0625-4

    Article  Google Scholar 

  • Swift ER, Hermann BR (1988) Orbit period frequency variations in the GPS satellite clocks. In: Proceedings of the 20th annual precise time and time interval (PTTI) applications and planning meeting, Vienna, VA (USA), Nov 29–Dec 1, pp 87–100

  • Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10):1515–1523. doi:10.1016/j.asr.2007.01.038

    Article  Google Scholar 

  • Zhao QL, Guo J, Li M, Qu LZ, Hu ZG, Shi C, Liu JN (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geodesy 87(5):475–486. doi:10.1007/s00190-013-0622-7

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Jim Ray for valuable discussions concerning research methods and also revisions of this paper. We would like to thank Mr. Jing Guo and Mr. Maorong Ge for the discussions, the IGS MGEX campaign for providing multi-GNSS data and products, and also the ILRS for providing the satellite laser ranging observations of BDS satellites. Finally, the authors are also grateful for the comments and remarks of the reviewers, which helped to improve the manuscript. This work is supported by the National Nature Science Foundation of China (Nos. 41231174; 41374034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Lou, Y., Liu, J. et al. Analysis of BDS satellite clocks in orbit. GPS Solut 20, 783–794 (2016). https://doi.org/10.1007/s10291-015-0488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-015-0488-7

Keywords

Navigation