Skip to main content
Log in

Improved relativistic transformations in GPS

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

For GPS satellite clocks, a nominal (hardware) frequency offset and a conventional periodic relativistic correction derived as a dot product of the satellite position and velocity vectors, are used to compensate the relativistic effects. The conventional hardware clock rate offset of 38,575.008 ns/day corresponds to a nominal orbit semi-major axis of about 26,561,400 m. For some of the GPS satellites, the departures from the nominal semi-major axis can cause an apparent clock rate up to 10 ns/day. GPS orbit perturbations, together with the earth gravity field oblateness, which is largely responsible for the orbit perturbations, cause the standard GPS relativistic transformations to depart from the rigorous relativity transformation by up to 0.2 ns/day. In addition, the conventional periodic relativistic correction exhibits periodic errors with amplitudes of about 0.1 and 0.2 ns, with periods of about 6 h and 14 days, respectively. Using an analytical integration of the gravity oblateness term (J2), a simple analytical approximation was derived for the apparent clock rate and the 6-h periodic errors of the standard GPS gravity correction. For daily linear representations of GPS satellite clocks, the improved relativistic formula was found to agree with the precise numerical integration of the GPS relativistic effects within about 0.015 ns. For most of the Block IIR satellites, the 6-h periodical errors of the GPS conventional relativistic correction are already detectable in the recent IGS final clock combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beutler G (2004) Method of celestial mechanics: theory and applications. Springer-Verlag, Berlin Heidelberg New York, 783 pp

    Google Scholar 

  • Burša M, Kouba J,. Raděj K, Vatrt V, Vojtíšková M, True SA (1998) Determination of geopotential at the tide gauge defining the North American vertical datum 1988 (NAVD88). Geomatica 53(3)291–296

    Google Scholar 

  • Burša M, Kenyon S, Kouba J, Muller A, Raděj K, Vatrt V, Vojtíšková M (2001a) Long-term stability of geodial geopotential from TOPEX-POSEIDON satellite altimetry 1993–1999. Earth Moon Planets 84:163–176

    Article  Google Scholar 

  • Burša M, Kouba J, Muller A, Raděj K, True SA, Vatrt V, Vojtíšková M (2001b) Determination of geopotential differences between local vertical datums and realization of a world height system. Studia geoph geod 45:127–132

    Article  Google Scholar 

  • Groten E (2001) Do we need a new reference system? IAG Symposia, September 2001, Budapest, Springer-Verlag, Berlin Heidelberg New York

  • IAU (1991) IAU transactions, vol 11B. Kluwer, Dordecht

  • ICD-GPS-200c (1993) Interface control document: NAVSTAR GPS space segment. Navigation user interface, AIR Inc. Research Corporation, Fountain Valley, California

    Google Scholar 

  • IERS (2003) IERS conventions (2003). IERS Technical Note 32, IERS, Frankfurt am Main

  • Kaula WM (1966) Theory of satellite geodesy. Blaidsdell, Waltham, Toronto, 120 pp

  • Kouba J, Springer T (2001) New IGS station and clock combination. GPS Solut 4(4)31–36

    Google Scholar 

  • Kouba J (2002) Relativistic time transformations in GPS. GPS Solut 5(4)1–9

    Google Scholar 

  • Petit G (1998) Importance of common framework for realization of space-time reference systems: In: Rummel R, Drewes H, Bosh W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS). Springer-Verlag, Berlin Heidelberg New York, pp 1–7

Download references

Acknowledgements

The author is also indebted to Jim Ray of the US NGS, P. Héroux and P. Tétreault of Geodetic Survey Division, NRCan, who have kindly agreed to read this contribution and provided the author with valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kouba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouba, J. Improved relativistic transformations in GPS. GPS Solutions 8, 170–180 (2004). https://doi.org/10.1007/s10291-004-0102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-004-0102-x

Keywords

Navigation