Skip to main content
Log in

The core of games on ordered structures and graphs

  • Invited Survey
  • Published:
4OR Aims and scope Submit manuscript

Abstract

In cooperative games, the core is the most popular solution concept, and its properties are well known. In the classical setting of cooperative games, it is generally assumed that all coalitions can form, i.e., they are all feasible. In many situations, this assumption is too strong and one has to deal with some unfeasible coalitions. Defining a game on a subcollection of the power set of the set of players has many implications on the mathematical structure of the core, depending on the precise structure of the subcollection of feasible coalitions. Many authors have contributed to this topic, and we give a unified view of these different results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algaba E (1998) Extensión de juegos definidos en sistemas de conjuntos. PhD thesis, Univ. of Seville, Spain

  • Algaba E, Bilbao JM, López JJ (2001) A unified approach to restricted games. Theory Decis 50: 333–345

    Article  Google Scholar 

  • Algaba E, Bilbao JM, van den Brink R, Jiménez-Losada A (2004) Cooperative games on antimatroids. Discrete Math 282: 1–15

    Article  Google Scholar 

  • Ambec S, Sprumont Y (2002) Sharing a river. J Econ Theory 107: 453–462

    Article  Google Scholar 

  • Aumann RJ, Drèze JH (1974) Cooperative games with coalition structures. Int J Game Theory 3: 217–237

    Article  Google Scholar 

  • Aumann R, Maschler M (1964) The bargaining set for cooperative games. In: Dresher M, Shapley L, Tucker A (eds) Advances in game theory. Princeton University Press, Princeton, pp 443–476

    Google Scholar 

  • Banzhaf J (1965) Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev 19: 317–343

    Google Scholar 

  • Baron R, Béal S, Rémila E, Solal Ph (2008) Average tree solutions for graph games. MPRA paper no. 10189, http://mpra.ub.uni-muenchen.de/10189

  • Béal S, Rémila E, Solal Ph (2009) Tree solutions for graph games. Working paper, University of St-Etienne

  • Bilbao JM (2000) Cooperative games on combinatorial structures. Kluwer, Boston

    Google Scholar 

  • Bilbao JM (2003) Cooperative games under augmenting systems. SIAM J Discrete Math 17: 122–133

    Article  Google Scholar 

  • Bilbao JM, Ordóñez M (2008) The core and the Weber set of games on augmenting systems. Working paper, University of Seville

  • Bilbao JM, Ordóñez M (2009) Axiomatizations of the Shapley value for games on augmenting systems. Eur J Oper Res 196: 1008–1014

    Article  Google Scholar 

  • Bilbao JM, Lebrón E, Jiménez N (1999) The core of games on convex geometries. Eur J Oper Res 119: 365–372

    Article  Google Scholar 

  • Birkhoff G (1933) On the combination of subalgebras. Proc Camb Phil Soc 29: 441–464

    Article  Google Scholar 

  • Birkhoff G (1967) Lattice theory, 3rd edn. American Mathematical Society

  • Bondareva O (1963) Some applications of linear programming to the theory of cooperative games. Probl Kibernet 10: 119–139 (in Russian)

    Google Scholar 

  • Borm P, Owen G, Tijs S (1992) On the position value for communication situations. SIAM J Discrete Math 5: 305–320

    Article  Google Scholar 

  • Brânzei R, Dimitrov D, Tijs S (2005) Models in cooperative game theory: crisp, fuzzy and multichoice games. Springer, New York

    Google Scholar 

  • Chateauneuf A, Jaffray J-Y (1989) Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math Soc Sci 17: 263–283

    Article  Google Scholar 

  • Choquet G (1953) Theory of capacities. Annal de l’Institut Fourier 5: 131–295

    Google Scholar 

  • Davey BA, Priestley HA (1990) Introduction to lattices and orders. Cambridge University Press, Cambridge

    Google Scholar 

  • Davis M, Maschler M (1963) Existence of stable payoff configurations for cooperative games. Bull Am Math Soc 69: 106–108

    Article  Google Scholar 

  • Davis M, Maschler M (1965) The kernel of a cooperative game. Naval Res Log Q 12: 223–259

    Article  Google Scholar 

  • Debreu G, Scarf H (1963) A limit theorem on the core of an economy. Int Econ Rev 4: 235–246

    Article  Google Scholar 

  • Demange G (1994) Intermediate preferences and stable coalitions structures. J Math Econ 23: 45–58

    Article  Google Scholar 

  • Demange G (2004) On group stability in hierarchies and networks. J Polit Econ 112: 754–778

    Article  Google Scholar 

  • Derks J, Gilles R (1995) Hierarchical organization structures and constraints on coalition formation. Int J Game Theory 24: 147–163

    Article  Google Scholar 

  • Derks J, Peters H (1998) Orderings, excess functions, and the nucleolus. Math Soc Sci 36: 175–182

    Article  Google Scholar 

  • Derks JJM, Reijnierse H (1998) On the core of a collection of coalitions. Int J Game Theory 27: 451–459

    Article  Google Scholar 

  • Derks J, van der Laan G, Vasil’ev V (2008) On the Harsanyi payoff vectors and Harsanyi imputations. Theory Decis. doi:10.1007/s11238-008-9124-0

  • Dilworth RP (1940) Lattices with unique irreducible representations. Annal Math 41: 771–777

    Article  Google Scholar 

  • Driessen T (1988) Cooperative games, solutions and applications. Kluwer, Boston

    Google Scholar 

  • Edelman PH, Jamison RE (1985) The theory of convex geometries. Geometriae Dedicata 19(3): 247–270

    Article  Google Scholar 

  • Edmonds J (1970) Submodular functions, matroids, and certain polyhedra. In: Guy R, Hanani H, Sauer N, Schönheim J (eds) Proceedings of the calgary international conference on combinatorial structures and their applications, pp 66–87

  • Faigle U (1989) Cores of games with restricted cooperation. ZOR Methods Models Oper Res 33: 405–422

    Article  Google Scholar 

  • Faigle U, Grabisch M (2009) A general discrete Choquet integral. Working paper, University of Paris I

  • Faigle U, Kern W (1992) The Shapley value for cooperative games under precedence constraints. Int J Game Theory 21: 249–266

    Article  Google Scholar 

  • Faigle U, Kern W, Still G (2002) Algorithmic principles of mathematical programming. Springer, Dordrecht

    Google Scholar 

  • Faigle U, Grabisch M, Heyne M (2009) Monge extensions of cooperation and communication structures. working paper, University of Köln

  • Felsenthal D, Machover M. (1998) The measurement of voting power: theory and practice, problems and paradoxes. Edward Elgar, London

    Google Scholar 

  • Fujishige S (2005) Submodular functions and optimization, volume 58 of Annals of Discrete Mathematics. Elsevier, Amsterdam

    Google Scholar 

  • Fujishige S, Tomizawa N (1983) A note on submodular functions on distributive lattices. J Oper Res Soc Jpn 26

  • Gilboa I, Lehrer E (1991) Global games. Int J Game Theory 20: 129–147

    Article  Google Scholar 

  • Gillies D (1953) Some theorems on n-person games. PhD thesis, Princeton, New Jersey

  • Gilles R, Owen G, van den Brink R (1992) Games with permission structures: the conjunctive approach. Int J Game Theory 20: 277–293

    Article  Google Scholar 

  • Grabisch M, Xie LJ (2008) The core of games on distributive lattices: how to share benefits in a hierarchy. Technical Report, Centre d’Economie de la Sorbonne, 2008.77

  • Graham DA, Marshall RC, Richard JF (1990) Differential payments within a bidder coalition and the Shapley value. Am Econ Rev 80: 493–510

    Google Scholar 

  • Grätzer G (1998) General lattice theory. Birkhäuser, Basel

    Google Scholar 

  • Harsanyi JC (1963) A simplified bargaining model for the n-person cooperative game. Int Econ Rev 4: 194–220

    Article  Google Scholar 

  • Herings P, van der Laan G, Talman D (2008) The average tree solution for cycle free games. Games Econ Behav 62: 77–92

    Article  Google Scholar 

  • Holler M, Owen G (2001) Power indices and coalition formation. Kluwer, Boston

    Google Scholar 

  • Honda A, Grabisch M (2008) An axiomatization of entropy of capacities on set systems. Eur J Oper Res 190: 526–538

    Article  Google Scholar 

  • Ichiishi T (1981) Super-modularity: applications to convex games and to the greedy algorithm for LP. J Econ Theory 25: 283–286

    Article  Google Scholar 

  • Kaneko M, Wooders M (1982) Cores of partitioning games. Math Soc Sci 3: 313–327

    Article  Google Scholar 

  • Khmelnitskaya A (2009) Values for rooted-tree and sink-tree digraph games and sharing a river. Theory Decis. doi:10.1007/s11238-009-9141-7

  • Lange F, Grabisch M (2009) Values on regular games under Kirchhoff’s laws. Math Soc Sci (to appear)

  • Le Breton G, Owen G, Weber S (1992) Strongly balanced cooperative games. Int J Game Theory 20: 419–427

    Article  Google Scholar 

  • Lovász L (1983) Submodular functions and convexity. In: Bachem A, Grötschel M, Korte B (eds) Mathematical programming. The state of the art. Springer, New York, , pp 235–257

    Google Scholar 

  • Monge G (1781) Déblai et remblai. Mém. de l’Académie des Sciences, Paris

    Google Scholar 

  • Myerson RB (1977a) Values of games in partition function form. Int J Game Theory 6: 23–31

    Article  Google Scholar 

  • Myerson RB (1977b) Graphs and cooperation in games. Math Oper Res 2: 225–229

    Article  Google Scholar 

  • Myerson RB (1980) Conference structures and fair allocation rules. Int J Game Theory 9: 169–182

    Article  Google Scholar 

  • Owen G (1977) Values of games with a priori unions. In: Henn R, Moeschlin O (eds) Essays in mathematical economics and game theory. Springer, New York, , pp 76–88

    Google Scholar 

  • Owen G (1986) Values of graph-restricted games. SIAM J Algebraic Discrete Methods 7: 210–220

    Article  Google Scholar 

  • Peleg B, Sudhölter P (2003) Introduction to the theory of cooperative games. Kluwer, Boston

    Google Scholar 

  • Potters J, Reijnierse H (1995) γ-Component additive games. Int J Game Theory 24: 49–56

    Article  Google Scholar 

  • Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM J Appl Math 17: 1163–1170

    Article  Google Scholar 

  • Schmeidler D (1972) Cores of exact games I. J Math Anal Appl 40: 214–225

    Article  Google Scholar 

  • Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games. Annals of Mathematics Studies, vol II (28). Princeton University Press, Princeton, pp 307–317

  • Shapley LS (1971) Core of convex games. Int J Game Theory 1: 11–26

    Article  Google Scholar 

  • Thrall RM, Lucas WF (1963) n-person games in partition function form. Naval Res Logistic Q 10: 281–298

    Article  Google Scholar 

  • Tijs S (1981) Bounds for the core and the τ-value. In: Moeschlin O, Pallaschke D (eds) Game theory and mathematical economics. North Holland Publishing, North Holland, pp 123–132

    Google Scholar 

  • Tomizawa N (1983) Theory of hyperspace (XVI)—on the structure of hedrons. Papers of the technical group on circuits and systems CAS82-172, Institute of Electronics and Communications Engineers of Japan, pp 309–318 (in Japanese)

  • van Deemen A (1997) Coalition formation and social choice. Kluwer, Boston

    Google Scholar 

  • van den Brink R (2009) On hierarchies and communication. TI-discussion paper 06-056/1. http://www.tinbergen.nl/ti-publications/discussion-papers.php?paper=772

  • van den Brink R, Laan G (2005) A class of consistent share functions for cooperative games in coalition structure. Games Econ Behav 51: 193–212

    Article  Google Scholar 

  • van den Brink R, Laan G, Vasil’ev V (2007) Component efficient solutions in line-graph games with applications. Econ Theory 33: 349–364

    Article  Google Scholar 

  • van den Nouweland A, Borm P (1991) On the convexity of communication games. Int J Game Theory 19: 421–430

    Article  Google Scholar 

  • van den Nouweland A, Borm P, Tijs S (1992) Allocation rules for hypergraph communication situations. Int J Game Theory 20: 255–268

    Article  Google Scholar 

  • Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman and Hall, London

    Google Scholar 

  • Xie LJ, Grabisch M (2009) The core of games on k-regular set systems. Technical Report, Centre d’Economie de la Sorbonne, 09055

  • Ziegler G (1995) Lectures on polytopes. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Grabisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabisch, M. The core of games on ordered structures and graphs. 4OR-Q J Oper Res 7, 207–238 (2009). https://doi.org/10.1007/s10288-009-0109-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-009-0109-9

Keywords

MSC classification (2000)

Navigation