Skip to main content
Log in

Plant dehydrins: shedding light on structure and expression patterns of dehydrin gene family in barley

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Dehydrins, an important group of late embryogenesis abundant proteins, accumulate in response to dehydration stresses and play protective roles under stress conditions. Herein, phylogenetic analysis of the dehydrin family was performed using the protein sequences of 108 dehydrins obtained from 14 plant species based on plant taxonomy and protein subclasses. Sub-cellular localization and phosphorylation sites of these proteins were also predicted. The protein features distinguishing these dehydrins categories were identified using various attribute weighting and decision tree analyses. The results revealed that the presence of the S motif preceding the K motif (YnSKn, SKn, and SnKS) was more evident and the YnSKn subclass was more frequent in monocots. In barley, as one of the most drought-tolerant crops, there are ten members of YnSKn out of 13 HvDhns. In promoter regions, six types of abiotic stress-responsive elements were identified. Regulatory elements in UTR sequences of HvDhns were infrequent while only four miRNA targets were found. Furthermore, physiological parameters and gene expression levels of HvDhns were studied in tolerant (HV1) and susceptible (HV2) cultivars, and in an Iranian tolerant wild barley genotype (Spontaneum; HS) subjected to gradual water stress and after recovery duration at the vegetative stage. The results showed the significant impact of dehydration on dry matter, relative leaf water, chlorophyll contents, and oxidative damages in HV2 compared with the other studied genotypes, suggesting a poor dehydration tolerance, and incapability of recovering after re-watering in HV2. Under severe drought stress, among the 13 HvDhns genes, 5 and 10 were exclusively induced in HV1 and HS, respectively. The gene and protein structures and the expression patterns of HvDhns as well as the physiological data consistently support the role of dehydrins in survival and recovery of barley plants from drought particularly in HS. Overall, this information would be helpful for functional characterization of the Dhn family in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDS:

Coding sequence

Dhn:

Dehydrin

DW:

Dry weight

FW:

Fresh weight

HV1:

Hordeum vulgare L. cv Yousef

HV2:

Hordeum vulgare L. cv Morocco 9–75

HS:

Hordeum vulgare L. ssp. Spontaneum

IRES:

Internal ribosome entry site

LEA:

Late embryogenesis abundant

LT:

Leaf temperature

MDA:

Malondialdehyde

NLS:

Nuclear localization signals

RWC:

Relative water content

SPAD:

Special products analysis division

TFBS:

Transcription factor binding sites

TSS:

Transcription start site

TW:

Turgid weights

UTR:

Untranslated region

WHC:

Water holding capacity

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882–40889

    Article  PubMed  CAS  Google Scholar 

  • Araujo PR, Yoon K, Ko D, Smith AD, Qiao M, Suresh U, Burns SC, Penalva LOF (2012) Before it gets started: regulating translation at the 5′ UTR. Comp Funct Genomics 2012:1–9

  • Babu RC, Zhang J, Blum A, Ho T-HD, Wu R, Nguyen H (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Badr A, El-Shazly H (2012) Molecular approaches to origin, ancestry and domestication history of crop plants: Barley and clover as examples. J Genet Eng Biotechnol 10:1–12

    Article  Google Scholar 

  • Bassett CL, Fisher KM, Farrell RE Jr (2015) The complete peach dehydrin family: characterization of three recently recognized genes. Tree Genet Genom 11:1–14

    Article  Google Scholar 

  • Bertolini E et al (2013) Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Mol Plant 6:423–443

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  PubMed  CAS  Google Scholar 

  • Bokor M, Csizmók V, Kovács D, Bánki P, Friedrich P, Tompa P, Tompa K (2005) NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys J 88:2030–2037

    Article  PubMed  CAS  Google Scholar 

  • Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2:1

    Article  Google Scholar 

  • Briesemeister S, Rahnenführer J, Kohlbacher O (2010) YLoc—an interpretable web server for predicting subcellular localization. Nucleic Acids Res 38:W497–W502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007a) Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28

    Article  CAS  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007b) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  PubMed  CAS  Google Scholar 

  • Buchanan C et al (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli S, Grando S (2007) Decentralized-participatory plant breeding: an example of demand driven research. Euphytica 155:349–360

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited environments. Exp Agric 43:411–436

    Article  Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci 104:18073–18078

    Article  PubMed  Google Scholar 

  • Chang KS, Lee SH, Hwang SB, Park KY (2000) Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.). Plant J 24:45–56

    Article  PubMed  CAS  Google Scholar 

  • Chappell SA, Owens GC, Mauro VP (2001) A 5′ leader of Rbm3, a cold stress-induced mRNA, mediates internal initiation of translation with increased efficiency under conditions of mild hypothermia. J Biol Chem 276:36917–36922

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Pal JK (2009) Role of 5′-and 3′-untranslated regions of mRNAs in human diseases. Biol Cell 101:251–262

    Article  PubMed  CAS  Google Scholar 

  • Choi D-W, Zhu B, Close T (1999a) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247

    Article  CAS  Google Scholar 

  • Choi H-i, Hong J-h, Ha J-o, Kang J-y, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Churbanov A, Rogozin IB, Babenko VN, Ali H, Koonin EV (2005) Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes. Nucleic Acids Res 33:5512–5520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhanda S, Sethi G (1998) Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica 104:39–47

    Article  Google Scholar 

  • Dóczi R, Csanaki C, Bánfalvi Z (2002) Expression and promoter activity of the desiccation-specific Solanum tuberosum gene, StDS2. Plant Cell Environ 25:1197–1203

    Article  Google Scholar 

  • Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1566–1570

    Article  CAS  Google Scholar 

  • Ebrahimi A, Fatahi R, Zamani Z (2011) Analysis of genetic diversity among some Persian walnut genotypes (Juglans regia L.) using morphological traits and SSRs markers. Scientia Horticulturae 130:146–151

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Erickson P, Ketring D, Stone J (1991) Response of internal tissue water balance of peanut to soil water. Agron J 83:248–253

    Article  Google Scholar 

  • Eriksson S, Eremina N, Barth A, Danielsson J, Harryson P (2016) Membrane-induced folding of the plant-stress protein Lti30. Plant Physiol:01531.02015

  • Falavigna VdS et al. (2015) Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy. Physiologia Plantarum 155:315–329

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, pp 153–188

  • Fujita Y et al (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghotbi-Ravandi A, Shahbazi M, Shariati M, Mulo P (2014) Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. J Agron Crop Sci 200:403–415

    Article  CAS  Google Scholar 

  • Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Walton L, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo P et al (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • Hernández-Sánchez IE, Maruri-López I, Ferrando A, Carbonell J, Graether SP, Jiménez-Bremont JF (2015) Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif. Front Plant Sci 6:1–8

  • Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F (1995) Immunolocalization of freezing- tolerance- associated proteins in the cytoplasm of wheat crown tissues. Plant J 8:583–593

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Wang Z, Du H, Huang B (2010) Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. J Plant Physiol 167:103–109

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Liu G, Liu D, Ahmed M, Hussain N, Teng Y (2015) Study on the expression of dehydrin genes and activities of antioxidativeenzymes in floral buds of two sand pear (Pyrus pyrifolia Nakai) cultivarsrequiring different chilling hours for bud break. Turk J Agric For 39:930–939

    Article  CAS  Google Scholar 

  • Jarošová J, Kundu JK (2010) Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol 10:1

    Article  CAS  Google Scholar 

  • Jensen AB, Goday A, Figueras M, Jessop AC, Pages M (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant Cell 13:691–697

    CAS  Google Scholar 

  • Jiang Y, Huang B (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41:436–442

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Karami A, Shahbazi M, Niknam V, Shobbar ZS, Tafreshi RS, Abedini R, Mabood HE (2013) Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiologiae Plantarum 35:2289–2297

    Article  CAS  Google Scholar 

  • Khanna-Chopra R, Selote DS (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environ Exp Bot 60:276–283

    Article  CAS  Google Scholar 

  • Khoshro HH, Taleei A, Bihamta MR, Shahbazi M, Abbasi A, Ramezanpour SS (2014) Expression analysis of the genes involved in accumulation and remobilization of assimilates in wheat stem under terminal drought stress. Plant Growth Regul 74:165–176

    Article  CAS  Google Scholar 

  • Koag M-C, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2014) Wheat and barley dehydrins under cold, drought, and salinity–what can LEA-II proteins tell us about plant stress response? Front Plant Sci 5:343

    PubMed  PubMed Central  Google Scholar 

  • Kruszka K et al (2013) Developmentally regulated expression and complex processing of barley pri-microRNAs. BMC Genom 14:34

    Article  CAS  Google Scholar 

  • Layton BE, Boyd MB, Tripepi MS, Bitonti BM, Dollahon MNR, Balsamo RA (2010) Dehydration-induced expression of a 31-kDa dehydrin in Polypodium polypodioides (Polypodiaceae) may enable large, reversible deformation of cell walls. Am J Bot 97:535–544

    Article  PubMed  CAS  Google Scholar 

  • Lee S-C, Lee M-Y, Kim S-J, Jun S-H, An G, Kim S-R (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Mol Cells 19:212–218

    PubMed  CAS  Google Scholar 

  • Liang D, Xia H, Wu S, Ma F (2012) Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol Biol Rep 39:10759–10768

    Article  PubMed  CAS  Google Scholar 

  • Liu C-C et al (2012) Genome-wide identification and characterization of a dehydrin gene family in poplar (Populus trichocarpa). Plant Mol Biol Rep 30:848–859

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv S, Nie X, Wang L, Du X, Biradar SS, Jia X, Weining S (2012) Identification and characterization of MicroRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci 13:2973–2984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv D-W et al (2014) Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Mol Cell Proteom 13:632–652

    Article  CAS  Google Scholar 

  • Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3:1–10

    Article  Google Scholar 

  • Mokrejš M, Mašek T, Vopálenský V, Hlubuček P, Delbos P, Pospíšek M (2010) IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res 38:D131–D136

    Article  PubMed  CAS  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  PubMed  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  PubMed  CAS  Google Scholar 

  • Ozturk ZN et al. (2002) Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Patthy L (2008) Introns: phase compatibility. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. http://www.els.net

  • Pearson GA et al (2010) An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Mar Biotechnol 12:195–213

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45–e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pisarev AV, Kolupaeva VG, Pisareva VP, Merrick WC, Hellen CU, Pestova TV (2006) Specific functional interactions of nucleotides at key −3 and +4 positions flanking the initiation codon with components of the mammalian 48 S translation initiation complex. Genes Dev 20:624–636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • PishkamRad R, Izadi Darbandi A, Shahbazi M, Fazel Najafabadi M, Nikkhah H, Abedini R, Barati M (2014) Assessment of morpho-physiological characteristics in common and wild barley cultivars under dehydration condition. Agric Crop Manag 1:85–98

    Google Scholar 

  • Plaschke J, Ganal M, Röder M (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    PubMed  CAS  Google Scholar 

  • Poets AM, Fang Z, Clegg MT, Morrell PL (2015) Barley landraces are characterized by geographically heterogeneous genomic origins. Genome Biol 16:1

    Article  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, HeinoPekka, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  PubMed  CAS  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    Article  PubMed  CAS  Google Scholar 

  • Rorat T (2006) Plant dehydrins-tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  PubMed  CAS  Google Scholar 

  • Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221

    Article  PubMed  CAS  Google Scholar 

  • Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957

    Article  PubMed  CAS  Google Scholar 

  • Schreiber AW, Shi B-J, Huang C-Y, Langridge P, Baumann U (2011) Discovery of barley miRNAs through deep sequencing of short reads. BMC Genom 12:129

    Article  CAS  Google Scholar 

  • Sharbatkhari M, Shobbar Z-S, Galeshi S, Nakhoda B (2016) Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains. Planta 244:191–202

  • Shobbar ZS, Shahbazi M, Nikkhah H, Dehghani Sanjii H, Sarabadani Tafreshi R (2014) Expression analysis of candidate genes involved in soluble carbohydrate metabolism in barley genotypes under terminal drought stress condition. Agriculture Scientific Information and Documentation Center, Agricultural Research and Education Organization. http://agris.fao.org/agris-search/search.do?recordID=IR2015001616

  • Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant cell Environ 27:1297–1308

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Grifith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach. Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Wong JW (2009) Dehydrin-like proteins in desiccation tolerance in intertidal seaweeds. Masters theses, Northeastern University, Boston, MA

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383

    Article  PubMed  CAS  Google Scholar 

  • Yang Y et al (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. Plant Mol Biol 12:140

    CAS  Google Scholar 

  • Zaefyzadeh M, Quliyev RA, Babayeva SM, Abbasov MA (2009) The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk J Biol 33:1–7

    CAS  Google Scholar 

  • Zahravi M (2009) Evaluation of barley genotypes (H. Spontaneum) as indices of drought tolerance. Seed Plant Improv J 25–1:533–549

    Google Scholar 

  • Zhang Y, Li J, Yu F, Cong L, Wang L, Burkard G, Chai T (2006) Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol Biotechnol 32:205–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant awarded by the Agriculture Biotechnology Research Institute of Iran, (ABRII). We would like to appreciate Dr. Stefania Grando, (ICARDA) who kindly provided the Morocco 9–75 seeds. Moreover, the authors are grateful to Dr. HamidReza Nikkhah (SPII) and Dr. Mehdi Zahravi (SPII) for providing the spring barley cv Yousef and Spantaneum seeds, respectively.

Author contributions

Most experiments and data analyses were performed by R. Abedini and F. GhaneGolmohammadi. Phylogentic analysis and protein feature analysis were assisted by E. Pourabed and A. Jafarneghad, respectively. R. PishkamRad contributed to biochemical analysis. M. Shahbazi and Z.S. Shaobbar were responsible for overall conceptualization and supervision of the experiments and worked on data processing and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahra-Sadat Shobbar or Maryam Shahbazi.

Additional information

Raha Abedini and Farzan GhaneGolmohammadi contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2152 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, R., GhaneGolmohammadi, F., PishkamRad, R. et al. Plant dehydrins: shedding light on structure and expression patterns of dehydrin gene family in barley. J Plant Res 130, 747–763 (2017). https://doi.org/10.1007/s10265-017-0941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-017-0941-5

Keywords

Navigation