Skip to main content
Log in

The complete peach dehydrin family: characterization of three recently recognized genes

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Three genes encoding dehydrins have been previously described from peach. In the course of searching the peach genome, three additional members of this stress-associated family were recognized, PpDhn4-6. PpDhn1 and 6 have no introns, whereas the remaining four genes have a single intron located near the 3′ end of the serine (S) tract. PpDHN2 was the only dehydrin with a predicted basic pI; pI predictions for the other dehydrins ranged from about 5.3 to about 6.3. None of the peach dehydrins have tryptophan residues, but, in contrast to most dehydrins, three (PpDHN1, 3, and 4) have one or more cysteine residues. Phylogenetic analysis indicated a close relationship between PpDhn1 and 6 and PpDhn3 and 4. Expression analysis under low temperature and dehydration confirmed that PpDhn2 is the major responder to drought, while both PpDhn1 and 6 respond exclusively to cold. Comparison of the first 500 base pairs upstream of the translation start site revealed the presence of cis-elements associated with low temperature and drought/osmotic/salt and hormone response regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882–40889

    Article  CAS  PubMed  Google Scholar 

  • Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28:1114–1122

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Artlip TS, Callahan AM, Bassett CL, Wisniewski ME (1997) Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica [L.] Batsch). Plant Mol Biol 33:61–70

    Article  CAS  PubMed  Google Scholar 

  • Asghar R, Fenton RD, DeMason DA, Close TJ (1994) Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma 177:87–94

    Article  CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-, and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  PubMed  Google Scholar 

  • Bassett CL, Wisniewski ME, Artlip TS, Norelli JL, Renaut J, Farrell RE Jr (2006) Global analysis of genes regulated by low temperature and photoperiod in peach bark. J Am Soc Hortic Sci 131:551–563

    CAS  Google Scholar 

  • Bassett CL, Wisniewski ME, Artlip TS, Richart G, Norelli JL, Farrell RE Jr (2009) Comparative expression and transcript initiation of three peach dehydrin genes. Planta 230:107–118

    Article  CAS  PubMed  Google Scholar 

  • Block WB, Dangl JL, Hahlbrock K, Schulze LP (1990) Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Proc Natl Acad Sci U S A 87:5387–5391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blum T, Briesemeister S, Kohlbacher O (2009) MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular localization prediction. BMC Bioinforma 10:274. doi:10.1186/1471-2105-10-274

    Article  Google Scholar 

  • Brameier M, Krings A, MacCallum RM (2007) NucPred—Predicting nuclear localization of proteins. Bioinformatics 23:1159–1160

  • Briesemeister S, Blum T, Brady S, Lam Y, Kohlbacher O, Shatkay H (2009) SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins. J Proteome Res 8:5363–5366

    Article  CAS  PubMed  Google Scholar 

  • Busk PK, Jensen AB, Pagès M (1997) Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J 11:1285–129

    Article  CAS  PubMed  Google Scholar 

  • Casadio R, Martelli PL, Pierleoni A (2008) The prediction of protein subcellular localization from sequence: a shortcut to functional genome annotation. Brief Funct Genom Proteomics 7:63. doi:10.1093/bfgp/eln003

    Article  CAS  Google Scholar 

  • Ceroni A, Passerini A, Vullo A, Frasconi P (2006) DISULFIND: a disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Res 34:W177–W181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang WC, Lee TY, Huang HD, Huand HY, Pan RL (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene group. BMC Genomics 9:561

    Article  PubMed Central  PubMed  Google Scholar 

  • Claeys M, Storms V, Sun H, Michoel T, Marchal K (2012) MotifSuite: workflow for probabilistic motif detections and assessment. Bioinformatics 28:193101932

    Article  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Close TJ, Fenton RD, Moonan F (1993) A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol Biol 23:279–286

    Article  CAS  PubMed  Google Scholar 

  • Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13:95–108

    Article  CAS  PubMed  Google Scholar 

  • Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM (2006) Comprehensive analysis of transcriptional promoter structure and function in 1 % of the human genome. Genome Res 16:1–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. doi:10.1093/nar/gkr245

    PubMed Central  PubMed  Google Scholar 

  • Donald RGK, Cashmore AR (1990) Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J 9:1717–1726

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dure L III, Crouch M, Harada J, Ho T-HD, Mundy J, Quatrano R, Thomas T, Sund ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  PubMed  Google Scholar 

  • Ezcurra I, Ellerström M, Wycliffe P, Stålberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709

    Article  CAS  PubMed  Google Scholar 

  • Fisher KM (2008) Bayesian reconstruction of ancestral expression of the LEA gene families reveals propagule-derived desiccation tolerance in resurrection plants. Am J Bot 95:506–515

    Article  PubMed  Google Scholar 

  • Galau GA, Hughes DW, Dure L III (1986) Abscisic acid induction of cloned cotton late embryogenesis-abundant (LEA) mRNAs. Plant Mol Biol 7:155–170

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Springer Science + Business Media, New York, pp 571–607

    Chapter  Google Scholar 

  • Gilmour SJ, Artus NN, Thomashow MF (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 18:13–21

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Graff L, Obrdlik P, Yuan L, Loqué D, Frommer WB, von Wirén N (2011) N-terminal cysteines affect oligomer stability of the allosterically regulated ammonium transporter LeAMT1;1. J Exp Bot 62:1361–1373

    Article  CAS  PubMed  Google Scholar 

  • Guruprasad K, Reddy BVB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel 4:155–161

    Article  CAS  Google Scholar 

  • Hara M (2010) The multifunctionality of dehydrins: an overview. Plant Signal Behav 5:503–508

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoter by zinc ion. Plant Cell Environ 32:532–541

    Article  CAS  PubMed  Google Scholar 

  • Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thorton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kosugi S, Hasebe M, Tomita M, Yanagawa H (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Nat Acad Sci USA 106:10171–10176

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin K, Simossis VA, Taylor WR, Heringa J (2005) A simple and fast secondary structure prediction algorithm using hidden neural networks. Bioinformatics 21:152–159

    Article  CAS  PubMed  Google Scholar 

  • Lisse T, Bartels D, Kalbitzer HR, Jaenicke R (1996) The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol Chem 377:555–561

    CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loake GJ, Faktor O, Lamb CJ, Dixon RA (1992) Combination of H-box (CCTACCN7CT) and G-box (CACGTG) cis-elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate ρ-coumaric acid. Proc Natl Acad Sci U S A 89:9230–9234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Thomashow MF (2009) A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J 60:328–339

    Article  CAS  PubMed  Google Scholar 

  • Molina C, Grotewold E (2005) Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6:25. doi:10.1186/1471-2164-6-25

    Article  PubMed Central  PubMed  Google Scholar 

  • Mouillon J-M, Gustafsson P, Harryson P (2006) Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol 141:638–650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35

    Article  CAS  PubMed  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Rinne PLH, Kaikuranta PLM, van der Plas LHW, van der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209:377–388

    Article  CAS  PubMed  Google Scholar 

  • Rombauts S, Déhais P, Van Montagu M, Rouzé P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Ho T-HD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-Box and a novel cis-acting element. Plant Cell 7:395–307

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Soulages JL, Kangmin K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Plant Physiol 131:963–975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svensson J, Palva ET, Welin B (2000) Purification of recombinant Arabidopsis dehydrins by metal ion affinity chromatography. Protein Expr Purif 20:169–178

    Article  CAS  PubMed  Google Scholar 

  • Thijs H, Molenberghs G, Michiels B, Verbeke G, Curran D (2002) Strategies to fit pattern-mixture models. Biostatistics 3:245

    Article  PubMed  Google Scholar 

  • Tompa P, Bánki P, Bokor M, Kamasa P, Kovács D, Lasanda G, Tompa K (2006) Protein-water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophys J 91:2243–2249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494. doi:10.1038/ng.2586

    Article  CAS  PubMed  Google Scholar 

  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  • Welin BV, Olson A, Palva ET (1995) Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Mol Biol 29:391–395

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski ME, Bassett CL, Arora R (2004) Distribution and partial characterization of seasonally expressed proteins in different aged shoots and roots of ‘Loring’ peach (Prunus persica). Tree Physiol 24:339–345

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski ME, Bassett CL, Renaut J, Farrell RE Jr, Tworkoski T, Artlip TS (2006) Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol 26:575–584

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu X-M, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Xiao H, Nassuth A (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep 25:968–977

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z, Chai TY (2008) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological datasets under the maximum likelihood criterion. Dissertation, University of Texas

Download references

Acknowledgments

We appreciate the expert technical assistance of Ms. Jing Ma in the expression studies. This work was supported in its entirety by the USDA, the Agricultural Research Service, CRIS project 8080-21000-022-00D.

Data archiving statement

The genes described herein can be found at the National Center for Biotechnology Information or the Genome Database for Rosaceae as follows: PpDhn 4: GenBank Accession No. XM_007200796, GDR Locus No. ppa026861m; PpDhn5: GenBank Accession No. XM_007201751, GDR Locus No. ppa010975m; and PpDhn6: GenBank Accession No. XM_007202386, GDR Locus No. ppa009997m. Promoter regions can be found under GenBank Accession numbers as follows: PpDhn1: AY819770, PpDhn2: AY819770, PpDhn3: EU286278; use 500 bases upstream of GDR scaffold_8:16894027…16894705 (− strand) for PpDhn4; scaffold_8:11638043…11641172 (− strand) for PpDhn5; and scaffold_7:17137970…17139156 (+ strand) for PpDhn6.

GenBank accession numbers for the grape dehydrin sequences are as follows: XM03631828 (VvDHN1a), XM022285883 (VvDHN2), CAN73166 (VvDHN3), and XM002285369 (VvDHN4). Arabidopsis dehydrin GenBank gene ID numbers for the polypeptides identified by gene name are as follows: At3g50980 (Xero1), At3g50970 (Xero2), At5g66400 (Rab18), At1g20450 (ERD10), At1g76180 (ERD14), and At1g20440 (COR47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Leavel Bassett.

Additional information

Communicated by A. M. Dandekar

Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that also may be suitable. USDA is an equal opportunity provider and employer.

This article is part of the Topical Collection on Genome Biology

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The alignment was conducted using the T-Coffee program (Notredame et al. 2000; Di Tommaso et al. 2011). Additional alignment was done by hand to maximize matches to relevant sequence features, such as the Y domain, the S tract and the last K motif. Dashes indicate regions lacking in sequence matches; the K motif is underlined and the Y domain is highlighted in gray. Degenerate K motifs are indicated by a dotted underline. (DOCX 15 kb)

Fig. S2

Phylogenetic tree resulting from the maximum likelihood analysis of six peach dehydrins (−lnL 3669.353). Bootstrap support values > 50 % (100 replicates) are indicated above branches. (PDF 23 kb)

Fig. S3

Intrinsic disorder profiles for PPDHN1 and 2. Amino acid sequences for the two predicted proteins were submitted to the DISOPRED server at PSIPRED (Ward et al. 2004). The graphic shows the DISOPRED3 disorder confidence levels relative to the amino acid positions as solid blue lines; solid orange lines represent confidence predictions on residuess involved in protein-protein interaction. The dashed line represents the threshold above which amino acids are regarded as disordered. (JPEG 1263 kb)

Fig. S4

Intrinsic disorder profiles for PPDHN3 and 4. The legend is the same as that for Figure S3. (JPEG 1311 kb)

Fig. S5

Intrinsic disorder profiles for PPDHN5. Two polypeptides are predicted beginning at different translation start sites. PPDHN5 begins at MAQIRDEYGN.... whereas PPDHN5B begins 22 residues 5' of the predicted PPDHN5 start site (MGLPFLISYFDRGLALFVKNTQ-MAQIRDEYGN...). (JPEG 1227 kb)

Fig. S6

Intrinsic disorder profile for PPDHN6. The legend is the same as that for Figure S3. (JPEG 886 kb)

Supplemental Table S1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassett, C.L., Fisher, K.M. & Farrell, R.E. The complete peach dehydrin family: characterization of three recently recognized genes. Tree Genetics & Genomes 11, 126 (2015). https://doi.org/10.1007/s11295-015-0923-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0923-5

Keywords

Navigation