Skip to main content
Log in

Mitigative effects of spermidine on photosynthesis and carbon–nitrogen balance of cucumber seedlings under Ca(NO3)2 stress

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Ca(NO3)2 stress is one of the most serious constraints to plants production and limits the plants growth and development. Application of polyamines is a convenient and effective approach for enhancing plant salinity tolerance. The present investigation aimed to discover the photosynthetic carbon–nitrogen (C–N) mechanism underlying Ca(NO3)2 stress tolerance by spermidine (Spd) of cucumber (Cucumis sativus L. cv. Jinyou No. 4). Seedling growth and photosynthetic capacity [including net photosynthetic rate (P N), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr)] were significantly inhibited by Ca(NO3)2 stress (80 mM). However, a leaf-applied Spd (1 mM) treatment alleviated the reduction in growth and photosynthesis in cucumber caused by Ca(NO3)2 stress. Furthermore, the application of exogenous Spd significantly decreased the accumulation of NO3 and NH4 + caused by Ca(NO3)2 stress and remarkably increased the activities of N metabolism enzymes simultaneously. In addition, photosynthesis N-use efficiency (PNUE) and free amino acids were significantly enhanced by exogenous Spd in response to Ca(NO3)2 stress, thus promoting the biosynthesis of N containing compounds and soluble protein. Also, the amounts of several carbohydrates (including sucrose, fructose and glucose), total C content and the C/N radio increased significantly in the presence of Spd. Based on our results, we suggest that exogenous Spd could effectively accelerate nitrate transformation into amino acids and improve cucumber plant photosynthesis and C assimilation, thereby enhancing the ability of the plants to maintain their C/N balance, and eventually promote the growth of cucumber plants under Ca(NO3)2 stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GDH:

Glutamate dehydrogenase

Ci:

Intercellular CO2 concentration

GOGAT:

Glutamate synthase

GS:

Glutamine synthetase

Gs:

Stomatal conductance

ICDH:

Isocitrate dehydrogenase

NiR:

Nitrite reductase

NR:

Nitrate reductase

PAs:

Polyamines

P N :

Net photosynthetic rate

PNUE:

Photosynthesis nitrogen-use efficiency

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

Tr:

Transpiration rate

References

  • Agren GI, Wetterstedt JAM, Billberger MFK (2012) Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus. New Phytol 194:953–960

    Article  PubMed  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phytobiochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Alcázar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio AF, Altabella T (2011) Integration of polyamines in the cold acclimation response. Plant Sci 180:31–38

    Article  PubMed  Google Scholar 

  • Aurisano N, Bertani A, Reggiani R (1995) Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia. Plant Cell Physiol 36:1525–1529

    CAS  Google Scholar 

  • Bao A, Zhao Z, Ding G, Shi L, Xu F, Cai H (2014) Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS One 9(4):e95581

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buysse J, Merckx R (1993) An important colorimetric method to quantify sugar content of 307 plant tissue. J Exp Bot 44:1627–1629

    Article  CAS  Google Scholar 

  • Campbell WH (2001) Structure and function of eukaryotic NAD(P)H: nitrate reductase. Cell Mol Life Sci 58:194–204

    Article  PubMed  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Datta R, Sharma R (1999) Temporal and spatial regulation of nitrate reductase and nitrite reductase in greening maize leaves. Plant Sci 144:77–83

    Article  CAS  Google Scholar 

  • Debez A, Saadaoui D, Ramani B, Ouerghi Z, Koyro H-W, Huchzermeyer B, Abdelly C (2006) Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environ Exp Bot 57:285–295

    Article  CAS  Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus—the protective role of polyamines. Biochim Biophys Acta 1767:272–280

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci 99:16314–16318

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Fariduddin Q, Varshney P, Yusuf M, Ahmad A (2013) Polyamines: potent modulators of plant responses to stress. J Plant Interact 8:1–16

    Article  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Fontaine JX, Tercé-Laforgue T, Armengaud P, Clément G, Renou JP, Pelletier S, Catterou M, Azzopardi M, Gibon Y, Lea PJ, Hirel B, Dubois F (2012) A characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell 24:4044–4065

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G, Verrier P (2006) Photosynthetic carbon nitrogen interactions: modelling inter-pathway control and signalling. In: Plaxton W, McManus MT (eds) Annual plant reviews: control of primary metabolism in plants, chapter 14. Blackwell, Oxford, pp 325–347

    Chapter  Google Scholar 

  • Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62:1467–1482

    Article  PubMed  CAS  Google Scholar 

  • Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036

    Article  CAS  Google Scholar 

  • Hussin S, Geissler N, Koyro HW (2013) Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol Plant 35:1025–1038

    Article  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of Spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Keys AJ (2006) The re-assimilation of ammonia produced by photorespiration and the nitrogen economy of C3 higher plants. Photosynth Res 87:165–175

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Yano T, Honna T, Yamamoto S, Inosako K (2006) Causes of farmland salinization and remedial measures in the Aral Sea basin-research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agric Water Manage 85:1–14

    Article  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change, chapter 1. Springer, New York, pp 1–28

    Chapter  Google Scholar 

  • Kronzucker HJ, Brittoa DT, Davenportb RJ, Testerb M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6:335–337

    Article  PubMed  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  PubMed  CAS  Google Scholar 

  • Labboun S, Tercé-Laforgue T, Roscher A, Bedu M, Restivo FM, Velanis CN, Skopelitis DS, Moschou PN, Roubelakis-Angelakis KA, Suzuki A, Hirel B (2009) Resolving the role of plant glutamate dehydrogenase. I. In vivo real time nuclear magnetic resonance spectroscopy experiments. Plant Cell Physiol 50:1761–1773

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lea PJ, Miflin BJ (2011) Nitrogen assimilation and its relevance to crop improvement. In: Foyer CH, Zhang H (eds) Nitrogen metabolism in plants in the Post-Genomic Era. Wiley-Blackwell, Chichester, pp 1–40

    Google Scholar 

  • Li D, Wu Z, Liang C, Chen L (2004) Characteristics and regulation of greenhouse soil environment. Chin J Ecol 23:192–197

    CAS  Google Scholar 

  • Lin CC, Kao CH (1996) Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regul 18:233–238

    Article  CAS  Google Scholar 

  • Liu K, Fu HH, Bei QX, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lòpez-Millàn AF, Morales F, Andaluz S, Gogorcena Y, Abadìa A, De Las Rivas J, Abadìa J (2000) Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiol 124:885–897

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    Article  CAS  Google Scholar 

  • Mattoo AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL (2006) Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen–carbon interactions. Plant Physiol 142:1759–1770

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miura K (2013) Nitrogen and phosphorus nutrition under salinity stress. In: Ecophysiology and responses of plants under salt stress. Springer, pp 425–441

  • Novitskaya S, Trevanion SD, Driscoll CH Foyer, Noctor G (2002) How does photorespiration modulate leaf amino acid contents. A dual approach through modelling and metabolite analysis. Plant Cell Environ 25:821–836

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  PubMed  CAS  Google Scholar 

  • Rosales EP, Iannone MF, Groppa MD, Benavides MP (2012) Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42:857–865

    Article  PubMed  CAS  Google Scholar 

  • Roy P, Niyogi K, Sengupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber APM, Zellerhoff N, Bucher M, Fahnenstich H, Schlüter US (2013) Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genom 14:442

    Article  Google Scholar 

  • Shevyakova NI, Shorina MV, Rakitin VY, Kuznetsov W (2006) Stress-dependent accumulation of spermidine and spermine in the halophyte Mesembryanthemum crystalinum under salinity conditions. Russ J Plant Physiol 53:739–745

    Article  CAS  Google Scholar 

  • Shevyakova NI, Ilina EN, Stetsenko LA, Kuznetsov VIV (2010) Nickel accumulation in rape shoots (Brassica napus L.) increased by putrescine. Int J Phytoremediation 13:345–356

    Article  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56:114–121

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Ye T, Chan Z (2013a) Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermuda grass (Cynodon dactylon) response to salt and drought stresses. J Proteome Res 12:4807–4829

    Article  Google Scholar 

  • Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P, Zhang Y, Chan Z (2013b) Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. J Exp Bot 64:1367–1379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shu S, Guo S, Sun J, Yuan L (2012a) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plantarum 146:285–296

    Article  CAS  Google Scholar 

  • Shu S, Guo S, Yuan L (2012b) A review: polyamines and photosynthesis, advances in photosynthesis—fundamental aspects. InTech, pp 440–464

  • Singh RP, Srivastava HS (1983) Regulation of glutamate dehydrogenase activity by amino acids in maize seedlings. Physiol Plant 57:549–554

    Article  CAS  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skopelitis DS, Paranychiankis NV, Kouvarakis A, Spyros A, Stephanou EG, Roubelakis-Angelakis KA (2007) The isoenzyme 7 of tobacco NADH-dependent glutamate dehydrogenase exhibits high deaminating and low aminating activity. Plant Physiol 145:1–9

    Article  Google Scholar 

  • Skrdleta V, Gaudinova A, Nemcova M (1979) Relationships between nitrate level, nitrate reductase activity and anaerobic nitrite production in Pisum sativum leaf tissue. Biol Plant 21:307–310

    Article  CAS  Google Scholar 

  • Slama I, Ghnaya T, Hssini K, Messedi D, Savouré A, Abdelly C (2007) Comparative study of mannitol and PE osmotic stress effects on growth, and solute accumulation in Sesuvium portulacastrum. Environ Exp Bot 61:10–17

    Article  CAS  Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural waters by the phenolhy pochlorite method. Limnol Oceanogr 14:799–801

    Article  CAS  Google Scholar 

  • Sun W, Huang A, Sang Y, Fu Y, Yang Z (2013) Carbon–nitrogen interaction modulates plant growth and expression of metabolic genes in rice. J Plant Growth Regul 32:575–584

    Article  CAS  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tassoni A, Franceschetti M, Bagni N (2008) Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem 46:607–613

    Article  PubMed  CAS  Google Scholar 

  • Todorova D, Katerova Z, Sergiev I, Alexieva V (2013) Role of polyamines in alleviating salt stress. ecophysiology and responses of plants under salt stress. In: Ahmad P, Azooz MM, Prasad MNV (eds) Chapter 13. Springer, New York, pp 355–380

  • Tonon G, Kevers C, Rampant OF, Graziani M, Gaspar T (2004) Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161:701–708

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Google Scholar 

  • Wang ZQ, Yuan YZ, Ou JQ, Lin QH, Zhang CF (2007) Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. J Plant Physiol 164:695–701

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wu Z, Han J, Zheng W, Yang C (2012) Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants. PLoS One 7(5):e37817

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wei G, Yang L, Zhu Y, Chen G (2009) Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Sci Hortic 120:443–451

    Article  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Phil Trans R Soc Lond B 355:1517–1529

    Article  CAS  Google Scholar 

  • Yu H, Li T, Zhou J (2005) Secondary salinization of greenhouse soil and its effects on soil properties. Soils 37:581–586

    CAS  Google Scholar 

  • Yuan L, Yuan Y, Du J, Sun J, Guo S (2012) Effects of 24-epibrassinolide on nitrogen metabolism in cucumber seedlings under Ca(NO3)2 stress. Plant Physiol Bioch 61:29–35

    Article  CAS  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella M (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    Article  CAS  Google Scholar 

  • Zhang G, Liu Z, Zhou J, Zhu Y (2008) Effects of Ca(NO3)2 stress on oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants. Plant Growth Regul 56:7–19

    Article  CAS  Google Scholar 

  • Zhang Y, Hu XH, Shi Y, Zou ZR, Yan F, Zhao YY, Zhang H, Zhao JZ (2013) Beneficial role of exogenous spermidine on nitrogen metabolism in tomato seedlings exposed to saline-alkaline stress. J Am Soc Hort Sci 138:28–49

    Google Scholar 

Download references

Acknowledgments

This work was funded by China Agriculture Research System (CARS-25-C-03) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 7292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Shu, S., Shao, Q. et al. Mitigative effects of spermidine on photosynthesis and carbon–nitrogen balance of cucumber seedlings under Ca(NO3)2 stress. J Plant Res 129, 79–91 (2016). https://doi.org/10.1007/s10265-015-0762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0762-3

Keywords

Navigation