Skip to main content
Log in

Separation for the stationary Prandtl equation

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

In this paper, we prove that separation occurs for the stationary Prandtl equation, in the case of adverse pressure gradient, for a large class of boundary data at \(x=0\). We justify the Goldstein singularity: more precisely, we prove that under suitable assumptions on the boundary data at \(x=0\), there exists \(x^{*}>0\) such that \(\partial _{y} u_{|y=0}(x) \sim C \sqrt{x^{*} -x}\) as \(x\to x^{*}\) for some positive constant \(C\), where \(u\) is the solution of the stationary Prandtl equation in the domain \(\{0< x< x^{*},\ y> 0\}\). Our proof relies on three main ingredients: the computation of a “stable” approximate solution, using modulation theory arguments; a new formulation of the Prandtl equation, for which we derive energy estimates, relying heavily on the structure of the equation; and maximum principle and comparison principle techniques to handle some of the nonlinear terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), 769–790.

    Article  MathSciNet  Google Scholar 

  2. H. Beirão da Veiga and F. Crispo, Concerning the \(W^{k,p}\)-inviscid limit for 3-D flows under a slip boundary condition, J. Math. Fluid Mech., 13 (2011), 117–135.

    Article  MathSciNet  Google Scholar 

  3. T. Clopeau, A. Mikelić and R. Robert, On the vanishing viscosity limit for the \(2{\mathrm{D}}\) incompressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity, 11 (1998), 1625–1636.

    Article  MathSciNet  Google Scholar 

  4. C. Cortazar, M. del Pino and M. Musso, Green’s function and infinite-time bubbling in the critical nonlinear heat equation, arXiv:1604.07117, 2016.

  5. M. del Pino, Bubbling blow-up in critical parabolic problems, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Lecture Notes in Math., vol. 2186, pp. 73–116, Springer, Cham, 2017, MR 3588122.

    Chapter  Google Scholar 

  6. M. del Pino, M. Musso and J. Wei, Type II blow-up in the 5-dimensional energy critical heat equation, arXiv:1808.10637, 2018.

  7. D. Gerard-Varet and Y. Maekawa, Sobolev stability of Prandtl expansions for the steady Navier–Stokes equations, Arch. Ration. Mech. Anal., 233 (2019), 1319–1382.

    Article  MathSciNet  Google Scholar 

  8. D. Gerard-Varet and N. Masmoudi, Well-posedness for the Prandtl system without analyticity or monotonicity, Ann. Sci. Éc. Norm. Supér. (4), 48 (2015), 1273–1325.

    Article  MathSciNet  Google Scholar 

  9. S. Goldstein, On laminar boundary-layer flow near a position of separation, Q. J. Mech. Appl. Math., 1 (1948), 43–69.

    Article  MathSciNet  Google Scholar 

  10. E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Commun. Pure Appl. Math., 53 (2000), 1067–1091.

    Article  MathSciNet  Google Scholar 

  11. Y. Guo and S. Iyer, Validity of steady Prandtl layer expansions, arXiv:1805.05891, 2018.

  12. Y. Guo and T. T. Nguyen, Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate, Ann. PDE, 3 (2017), 10.

    Article  MathSciNet  Google Scholar 

  13. M. A. Herrero and J. J. L. Velázquez, Explosion de solutions d’équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci., Sér. 1 Math., 319 (1994), 141–145.

    MATH  Google Scholar 

  14. D. Iftimie and F. Sueur, Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, Arch. Ration. Mech. Anal., 199 (2011), 145–175.

    Article  MathSciNet  Google Scholar 

  15. S. Iyer, Global Steady Prandtl expansion over a moving boundary, arXiv:1609.05397, 2016.

  16. S. Iyer, Steady Prandtl boundary layer expansions over a rotating disk, Arch. Ration. Mech. Anal., 224 (2017).

    Article  MathSciNet  Google Scholar 

  17. S. Iyer, Steady Prandtl layers over a moving boundary: non-shear Euler flows, arXiv:1705.05936, 2017.

  18. T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, in Seminar on Nonlinear Partial Differential Equations, Math. Sci. Res. Inst. Publ., vol. 2, Berkeley, CA, 1983, pp. 85–98, Springer, New York, 1984.

    Chapter  Google Scholar 

  19. J. P. Kelliher, Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane, SIAM J. Math. Anal., 38 (2006), 210–232.

    Article  MathSciNet  Google Scholar 

  20. J. P. Kelliher, R. Temam and X. Wang, Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media, Physica D, 240 (2011), 619–628.

    Article  MathSciNet  Google Scholar 

  21. I. Kukavica and V. Vicol, On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci., 11 (2013), 269–292.

    Article  MathSciNet  Google Scholar 

  22. I. Kukavica, N. Masmoudi, V. Vicol and T. Kwong Wong, On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal., 46 (2014), 3865–3890.

    Article  MathSciNet  Google Scholar 

  23. I. Kukavica, V. Vicol and F. Wang, The van Dommelen and Shen singularity in the Prandtl equations, Adv. Math., 307 (2017), 288–311.

    Article  MathSciNet  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, vol. 6, Pergamon/Addison-Wesley, London-Paris-Frankfurt/Reading, 1959, translated from the Russian by Sykes, J.B. and Reid, W.H.

    Google Scholar 

  25. M.C. Lombardo, M. Cannone and M. Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal., 35 (2003), 987–1004.

    Article  MathSciNet  Google Scholar 

  26. N. Masmoudi, The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary, Arch. Ration. Mech. Anal., 142 (1998), 375–394.

    Article  MathSciNet  Google Scholar 

  27. N. Masmoudi, About the Hardy inequality, in An Invitation to Mathematics, pp. 165–180, Springer, Berlin, 2011.

    Chapter  Google Scholar 

  28. N. Masmoudi and F. Rousset, Uniform regularity for the Navier-Stokes equation with Navier boundary condition, Arch. Ration. Mech. Anal., 203 (2012), 529–575.

    Article  MathSciNet  Google Scholar 

  29. N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, Arch. Ration. Mech. Anal., 223 (2017), 301–417.

    Article  MathSciNet  Google Scholar 

  30. N. Masmoudi and T.K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Commun. Pure Appl. Math., 68 (2015), 1683–1741.

    Article  MathSciNet  Google Scholar 

  31. F. Merle and P. Raphael, On universality of blow-up profile for \(L^{2}\) critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565–672.

    Article  MathSciNet  Google Scholar 

  32. F. Merle and P. Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math. (2), 161 (2005), 157–222.

    Article  MathSciNet  Google Scholar 

  33. F. Merle, P. Raphaël and I. Rodnianski, Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Invent. Math., 193 (2013), 249–365.

    Article  MathSciNet  Google Scholar 

  34. F. Merle, P. Raphaël and I. Rodnianski, Type II blow up for the energy supercritical NLS, Camb. J. Math., 3 (2015), 439–617.

    Article  MathSciNet  Google Scholar 

  35. O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, 1999.

    MATH  Google Scholar 

  36. L. Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, in Verhandlungen des III. Internationalen Mathematiker-Kongresses, Heidelberg, 1904, pp. 484–491, Teubner, Leipzig, 1905.

    Google Scholar 

  37. M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192 (1998), 433–461.

    Article  MathSciNet  Google Scholar 

  38. M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Commun. Math. Phys., 192 (1998), 463–491.

    Article  MathSciNet  Google Scholar 

  39. K. Stewartson, On Goldstein’s theory of laminar separation, Q. J. Mech. Appl. Math., 11 (1958), 399–410.

    Article  MathSciNet  Google Scholar 

  40. C. Sulem and P.-L. Sulem, Self-focusing and wave collapse, in The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, vol. 139, Springer, New York, 1999.

    MATH  Google Scholar 

  41. Y.-G. Wang and S.-Y. Zhu, Separation of the two-dimensional unsteady Prandtl boundary layers under adverse pressure gradient, arXiv:1801.10481, 2018.

  42. E. Weinan, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin. Engl. Ser., 16 (2000), 207–218.

    Article  MathSciNet  Google Scholar 

  43. E. Weinan and B. Engquist, Blowup of solutions of the unsteady Prandtl’s equation, Commun. Pure Appl. Math., 50 (1997), 1287–1293.

    Article  MathSciNet  Google Scholar 

  44. Z. Xin, Viscous boundary layers and their stability. I, J. Partial Differ. Equ., 11 (1998), 97–124.

    MathSciNet  MATH  Google Scholar 

  45. V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Eksp. Teor. Fiz., 61 (1971), 118–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalibard, AL., Masmoudi, N. Separation for the stationary Prandtl equation. Publ.math.IHES 130, 187–297 (2019). https://doi.org/10.1007/s10240-019-00110-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-019-00110-z

Navigation