Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2186))

Abstract

These lecture notes are devoted to the analysis of blow-up of solutions for some parabolic equations that involve bubbling phenomena. The term bubbling refers to the presence of families of solutions which at main order look like scalings of a single stationary solution which in the limit become singular but at the same time have an approximately constant energy level. This arise in various problems where critical loss of compactness for the underlying energy appears. Three main equations are studied, namely: the Sobolev critical semilinear heat equation in \(\mathbb{R}^{n}\), the harmonic map flow from \(\mathbb{R}^{2}\) into S 2, the Patlak-Keller-Segel system in \(\mathbb{R}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.B. Angenent, J. Hulshof, H. Matano, The radius of vanishing bubbles in equivariant harmonic map flow from D 2 toS 2. SIAM J. Math. Anal. 41, 1121–1137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44, 32 (2006)

    MathSciNet  MATH  Google Scholar 

  3. A. Blanchet, J. Carrillo, N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in \(\mathbb{R}^{2}\). Commun. Pure Appl. Math. 61, 144–1481 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Blanchet, E. Carlen, J. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. J. Funct. Anal. 262(5), 2142–2230 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Campos, Ph.D. Thesis U. Paris Dauphine, 2012

    Google Scholar 

  6. E. Carlen, A. Figalli, Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation. Duke Math. J. 162(3), 579–625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Cazenave, P.-L. Lions, Solutions globales d’équations de la chaleur semi linéaires. Commun. Partial Differ. Equ. 9, 955–978 (1984)

    Article  MATH  Google Scholar 

  8. K.-C. Chang, Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(5), 363–395 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. K.-C. Chang, W.Y. Ding, R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36(2), 507–515 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. P.-H. Chavanis, C. Sire, Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models. Phys. Rev. E (3) 73(6), 066103, 16 pp. (2006)

    Google Scholar 

  11. C. Cortázar, M. del Pino, M. Musso, Green’s function and infinite-time bubbling in the critical nonlinear heat equation. J. Eur. Math. Soc. (to appear). Preprint, arXiv:1604.07117

    Google Scholar 

  12. W. Ding, G. Tian, Energy identity for a class of approximate harmonic maps from surfaces. Commun. Anal. Geom. 3(3–4), 543–554 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.-Z. Du, On partial regularity of the borderline solution of semilinear parabolic equation with critical growth. Adv. Differ. Equ. 18(1–2), 147–177 (2013)

    MathSciNet  MATH  Google Scholar 

  14. J. Eells Jr., J.H. Sampson, Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Freire, Uniqueness for the harmonic map flow in two dimensions. Calc. Var. Partial Differ. Equ. 3(1), 95–105 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. V.A. Galaktionov, J.R. King, Composite structure of global unbounded solutions of nonlinear heat equations with critical Sobolev exponents. J. Differ. Equ. 189(1), 199–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Galaktionov, J.L. Vazquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Commun. Pure Appl. Math. 50, 1–67 (1997)

    Article  MATH  Google Scholar 

  18. T. Ghoul, N. Masmoudi, Stability of infinite time blow up for the Patlak Keller Segel system. Preprint arXiv:1610.00456

    Google Scholar 

  19. Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Guan, S. Gustafson, T.P. Tsai, Global existence and blow-up for harmonic map heat flow. J. Differ. Equ. 246(1), 1–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.A. Herrero, J.J.L. Velázquez, Explosion de solutions d’equations paraboliques semilineaires supercritiques [Blowup of solutions of supercritical semilinear parabolic equations]. C. R. Acad. Sci. Paris Ser. I Math. 319(2), 141–145 (1994)

    MathSciNet  MATH  Google Scholar 

  22. F.H. Lin, C.Y. Wang, Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. Partial Differ. Equ. 6, 369–380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Matano, F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation. J. Funct. Anal. 261(3), 716–748 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. W.-M. Ni, P.E. Sacks, J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations. J. Differ. Equ. 54, 97–120 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.I. Pohozaev, On the eigenfunctions of the equation \(\Delta u +\lambda f(u) = 0\). Sov. Math. Dokl. 6, 1408–1411 (1965)

    MATH  Google Scholar 

  26. J. Qing, On singularities of the heat flow for harmonic maps from surfaces into spheres. Commun. Anal. Geom. 3(1–2), 297–315 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Qing, G. Tian, Bubbling of the heat flows for harmonic maps from surfaces. Commun. Pure Appl. Math. 50(4), 295–310 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Quittner, P. Souplet, in Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States. Birkhauser Advanced Texts (Birkhauser, Basel, 2007)

    Google Scholar 

  29. P. Raphaël, R. Schweyer, Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow. Commun. Pure Appl. Math. 66(3), 414–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Raphaël, R. Schweyer, On the stability of critical chemotactic aggregation. Math. Ann. 359(1–2), 267–377 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(4), 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Suzuki, Semilinear parabolic equation on bounded domain with critical Sobolev exponent. Indiana Univ. Math. J. 57(7), 3365–3396 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Talenti, Best constants in Sobolev inequality. Ann. Mat. Pura Appl. (4) 10, 353–372 (1976)

    Google Scholar 

  35. P.M. Topping, Reverse bubbling and nonuniqueness in the harmonic map flow. Int. Math. Res. Not. 10, 505–520 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. P.M. Topping, Winding behaviour of finite-time singularities of the harmonic map heat flow. Math. Z. 247, 279–302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.B. van den Berg, J.F. Williams, (In-)stability of singular equivariant solutions to the Landau-Lifshitz-Gilbert equation. Eur. J. Appl. Math. 24(6), 921–948 (2013)

    Google Scholar 

  38. J.B. van den Berg, J. Hulshof, J.R. King, Formal asymptotics of bubbling in the harmonic map heat flow. SIAM J. Appl. Math. 63, 1682–1717 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. van der Hout, On the nonexistence of finite time bubble trees in symmetric harmonic map heat flows from the disk to the 2-sphere. J. Differ. Equ. 192(1), 188–201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by Fondecyt grant 115066, Millennium Nucleus Center for Analysis of PDE NC13001, and Fondo Basal CMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel del Pino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

del Pino, M. (2017). Bubbling Blow-Up in Critical Parabolic Problems. In: Bonforte, M., Grillo, G. (eds) Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Lecture Notes in Mathematics(), vol 2186. Springer, Cham. https://doi.org/10.1007/978-3-319-61494-6_2

Download citation

Publish with us

Policies and ethics