Skip to main content

Advertisement

Log in

T cell senescence and cardiovascular diseases

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Age-related changes in the immune system, commonly termed “immunosenescence,” contribute to deterioration of the immune response and fundamentally impact the health and survival of elderly individuals. Immunosenescence affects both the innate and adaptive immune systems; however, the most notable changes are in T cell immunity and include thymic involution, the collapse of T cell receptor (TCR) diversity, an imbalance in T cell populations, and the clonal expansion of senescent T cells. Senescent T cells have the ability to produce large quantities of proinflammatory cytokines and cytotoxic mediators; thus, they have been implicated in the pathogenesis of many chronic inflammatory diseases. Recently, an increasing body of evidence has suggested that senescent T cells also have pathogenic potential in cardiovascular diseases, such as hypertension, atherosclerosis, and myocardial infarction, underscoring the detrimental roles of these cells in various chronic inflammatory responses. Given that cardiovascular disease is the number one cause of death worldwide, there is great interest in understanding the contribution of age-related immunological changes to its pathogenesis. In this review, we discuss general features of age-related alterations in T cell immunity and the possible roles of senescent T cells in the pathogenesis of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grubeck-Loebenstein B, Berger P, Saurwein-Teissl M, Zisterer K, Wick G. No immunity for the elderly. Nat Med. 1998;4(8):870.

    Article  CAS  PubMed  Google Scholar 

  2. Nikolich-Zugich J. T cell aging: naive but not young. J Exp Med. 2005;201:837–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nikolich-Zugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol. 2008;8(7):512–22. doi:10.1038/nri2318.

    Article  CAS  PubMed  Google Scholar 

  4. Miller RA. The aging immune system: primer and prospectus. Science. 1996;273(5271):70–4.

    Article  CAS  PubMed  Google Scholar 

  5. Weng NP. Aging of the immune system: How much can the adaptive immune system adapt? Immunity. 2006;24(5):495–9. doi:10.1016/j.immuni.2006.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brody JA, Brock DB. Handbook of the biology of aging. London: Nature Publishing Group; 1985. p. 3–42.

    Google Scholar 

  7. Robinson KA. Epidemiology of invasive Streptococcus pneumoniae infections in the United States, 1995–1998: opportunities for prevention in the conjugate vaccine era. JAMA. 2001;285:1729–35.

    Article  CAS  PubMed  Google Scholar 

  8. Gardner ID. The effect of aging on susceptibility to infection. Rev Infect Dis. 1980;2:801–10.

    Article  CAS  PubMed  Google Scholar 

  9. Akbar AN, Fletcher JM. Memory T cell homeostasis and senescence during aging. Curr Opin Immunol. 2005;17(5):480–5.

    Article  CAS  PubMed  Google Scholar 

  10. Yoshikawa TT. Perspective: aging and infectious diseases: past, present, and future. J Infect Dis. 1997;176(4):1053–7.

    Article  CAS  PubMed  Google Scholar 

  11. Goronzy JJ, Fulbright JW, Crowson CS, Poland GA, O’Fallon WM, Weyand CM. Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J Virol. 2001;75(24):12182–7. doi:10.1128/JVI.75.24.12182-12187.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weksler ME, Pawelec G, Franceschi C. Immune therapy for age-related diseases. Trends Immunol. 2009;30(7):344–50. doi:10.1016/j.it.2009.03.011.

    Article  CAS  PubMed  Google Scholar 

  13. Woodland DL, Blackman MA. Immunity and age: Living in the past? Trends Immunol. 2006;27(7):303–7. doi:10.1016/j.it.2006.05.002.

    Article  CAS  PubMed  Google Scholar 

  14. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA. 2003;289(2):179–86.

    Article  PubMed  Google Scholar 

  15. Nichol KL, Nordin JD, Nelson DB, Mullooly JP, Hak E. Effectiveness of influenza vaccine in the community-dwelling elderly. N Engl J Med. 2007;357(14):1373–81. doi:10.1056/NEJMoa070844.

    Article  CAS  PubMed  Google Scholar 

  16. Arvin A. Aging, immunity, and the varicella-zoster virus. N Engl J Med. 2005;352(22):2266–7. doi:10.1056/NEJMp058091.

    Article  CAS  PubMed  Google Scholar 

  17. Goronzy JJ, Li G, Yang Z, Weyand CM. The janus head of T cell aging—autoimmunity and immunodeficiency. Front Immunol. 2013;4:131. doi:10.3389/fimmu.2013.00131.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goronzy JJ, Weyand CM. Immune aging and autoimmunity. Cell Mol Life Sci. 2012;69(10):1615–23. doi:10.1007/s00018-012-0970-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goronzy JJ, Weyand CM. Understanding immunosenescence to improve responses to vaccines. Nat Immunol. 2013;14(5):428–36. doi:10.1038/ni.2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cavanagh MM, Weyand CM, Goronzy JJ. Chronic inflammation and aging: DNA damage tips the balance. Curr Opin Immunol. 2012;24(4):488–93. doi:10.1016/j.coi.2012.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22(4):507–13. doi:10.1016/j.coi.2010.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  23. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2012 update: a report from the American heart association. Circulation. 2012;125(1):e2–220. doi:10.1161/CIR.0b013e31823ac046.

    Article  PubMed  Google Scholar 

  24. Fulop T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013;4:271. doi:10.3389/fimmu.2013.00271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dowling MR, Hodgkin PD. Why does the thymus involute? A selection-based hypothesis. Trends Immunol. 2009;30(7):295–300. doi:10.1016/j.it.2009.04.006.

    Article  CAS  PubMed  Google Scholar 

  26. Steinmann GG. Changes in the human thymus during aging. Curr Top Pathol. 1986;75:43–88.

    Article  CAS  PubMed  Google Scholar 

  27. Steinmann GG, Klaus B, Muller-Hermelink HK. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol. 1985;22(5):563–75.

    Article  CAS  PubMed  Google Scholar 

  28. Lamar LL, Weyand CM, Goronzy JJ. Age, T-cell homeostasis, and T-cell diversity in humans. In: Fülöp T, Franceschi C, Hirokawa K, Pawelec G, SpringerLink (Online service), editors. Handbook on immunosenescence basic understanding and clinical applications, vol I. Dordrecht: Springer; 2009. p. 167–92.

  29. Naylor K. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174:7446–52.

    Article  CAS  PubMed  Google Scholar 

  30. den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, de Boer AB, et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity. 2012;36(2):288–97. doi:10.1016/j.immuni.2012.02.006.

    Article  Google Scholar 

  31. Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity. 2008;29(6):848–62. doi:10.1016/j.immuni.2008.11.002.

    Article  CAS  PubMed  Google Scholar 

  32. Goronzy JJ, Weyand CM. T cell development and receptor diversity during aging. Curr Opin Immunol. 2005;17(5):468–75. doi:10.1016/j.coi.2005.07.020.

    Article  CAS  PubMed  Google Scholar 

  33. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998;396(6712):690–5.

    Article  CAS  PubMed  Google Scholar 

  34. Goronzy JJ, Lee WW, Weyand CM. Aging and T-cell diversity. Exp Gerontol. 2007;42(5):400–6. doi:10.1016/j.exger.2006.11.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, et al. Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci USA. 2014;111(36):13139–44. doi:10.1073/pnas.1409155111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Czesnikiewicz-Guzik M, Lee WW, Cui D, Hiruma Y, Lamar DL, Yang ZZ, et al. T cell subset-specific susceptibility to aging. Clin Immunol. 2008;127(1):107–18. doi:10.1016/j.clim.2007.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Henson SM, Riddell NE, Akbar AN. Properties of end-stage human T cells defined by CD45RA re-expression. Curr Opin Immunol. 2012;24(4):476–81. doi:10.1016/j.coi.2012.04.001.

    Article  CAS  PubMed  Google Scholar 

  38. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8(4):379–85.

    Article  CAS  PubMed  Google Scholar 

  39. Cavanagh MM, Qi Q, Weyand CM, Goronzy JJ. Finding balance: T cell regulatory receptor expression during aging. Aging Dis. 2011;2(5):398–413.

    PubMed  PubMed Central  Google Scholar 

  40. Pawelec G, Akbar A, Caruso C, Effros R, Grubeck-Loebenstein B, Wikby A. Is immunosenescence infectious? Trends Immunol. 2004;25(8):406–10. doi:10.1016/j.it.2004.05.006.

    Article  CAS  PubMed  Google Scholar 

  41. Pawelec G. Immunosenenescence: role of cytomegalovirus. Exp Gerontol. 2014;54C:1–5. doi:10.1016/j.exger.2013.11.010.

    Article  Google Scholar 

  42. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169(4):1984–92.

    Article  CAS  PubMed  Google Scholar 

  43. Koch S, Larbi A, Ozcelik D, Solana R, Gouttefangeas C, Attig S, et al. Cytomegalovirus infection: a driving force in human T cell immunosenescence. Ann N Y Acad Sci. 2007;1114:23–35. doi:10.1196/annals.1396.043.

    Article  CAS  PubMed  Google Scholar 

  44. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202(5):673–85. doi:10.1084/jem.20050882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ouyang Q, Wagner WM, Zheng W, Wikby A, Remarque EJ, Pawelec G. Dysfunctional CMV-specific CD8(+) T cells accumulate in the elderly. Exp Gerontol. 2004;39(4):607–13. doi:10.1016/j.exger.2003.11.016.

    Article  CAS  PubMed  Google Scholar 

  46. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol. 2003;170(4):2022–9.

    Article  CAS  PubMed  Google Scholar 

  47. O’Hara GA, Welten SP, Klenerman P, Arens R. Memory T cell inflation: understanding cause and effect. Trends Immunol. 2012;33(2):84–90. doi:10.1016/j.it.2011.11.005.

    Article  PubMed  Google Scholar 

  48. Derhovanessian E, Larbi A, Pawelec G. Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr Opin Immunol. 2009;21(4):440–5. doi:10.1016/j.coi.2009.05.012.

    Article  CAS  PubMed  Google Scholar 

  49. Globerson A, Effros RB. Ageing of lymphocytes and lymphocytes in the aged. Immunol Today. 2000;21(10):515–21.

    Article  CAS  PubMed  Google Scholar 

  50. Strioga M, Pasukoniene V, Characiejus D. CD8+ CD28− and CD8+ CD57+ T cells and their role in health and disease. Immunology. 2011;134(1):17–32. doi:10.1111/j.1365-2567.2011.03470.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, et al. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci. 2005;60(5):556–65.

    Article  PubMed  Google Scholar 

  52. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.

    Article  CAS  PubMed  Google Scholar 

  53. Ammirati E, Cianflone D, Vecchio V, Banfi M, Vermi AC, De Metrio M, et al. Effector memory T cells are associated with atherosclerosis in humans and animal models. J Am Heart Assoc. 2012;1(1):27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vinh A, Chen W, Blinder Y, Weiss D, Taylor WR, Goronzy JJ, et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation. 2010;122(24):2529–37.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fish KN, Soderberg-Naucler C, Mills LK, Stenglein S, Nelson JA. Human cytomegalovirus persistently infects aortic endothelial cells. J Virol. 1998;72(7):5661–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bentz GL, Yurochko AD. Human CMV infection of endothelial cells induces an angiogenic response through viral binding to EGF receptor and β1 and β3 integrins. Proc Natl Acad Sci USA. 2008;105(14):5531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheng J, Ke Q, Jin Z, Wang H, Kocher O, Morgan JP, et al. Cytomegalovirus infection causes an increase of arterial blood pressure. PLoS Pathog. 2009;5(5):e1000427.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Núñez J, Chilet M, Sanchis J, Bodí V, Núñez E, Miñana G, et al. Prevalence and prognostic implications of active cytomegalovirus infection in patients with acute heart failure. Clin Sci. 2010;119(10):443–52.

    Article  PubMed  Google Scholar 

  60. Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE. Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One. 2011;6(2):e16103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wall NA, Chue CD, Edwards NC, Pankhurst T, Harper L, Steeds RP, et al. Cytomegalovirus seropositivity is associated with increased arterial stiffness in patients with chronic kidney disease. PLoS One. 2013;8(2):e55686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.

    Article  CAS  PubMed  Google Scholar 

  63. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204–12.

    Article  CAS  PubMed  Google Scholar 

  64. Spyridopoulos I, Hoffmann J, Aicher A, Brummendorf TH, Doerr HW, Zeiher AM, et al. Accelerated telomere shortening in leukocyte subpopulations of patients with coronary heart disease: role of cytomegalovirus seropositivity. Circulation. 2009;120(14):1364–72. doi:10.1161/CIRCULATIONAHA.109.854299.

    Article  PubMed  Google Scholar 

  65. Blankenberg S, Rupprecht HJ, Bickel C, Espinola-Klein C, Rippin G, Hafner G, et al. Cytomegalovirus infection with interleukin-6 response predicts cardiac mortality in patients with coronary artery disease. Circulation. 2001;103(24):2915–21.

    Article  CAS  PubMed  Google Scholar 

  66. Grahame-Clarke C, Chan NN, Andrew D, Ridgway GL, Betteridge DJ, Emery V, et al. Human cytomegalovirus seropositivity is associated with impaired vascular function. Circulation. 2003;108(6):678–83. doi:10.1161/01.CIR.0000084505.54603.C7.

    Article  PubMed  Google Scholar 

  67. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet. 2001;358(9280):472–3.

    Article  CAS  PubMed  Google Scholar 

  68. Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23(5):842–6.

    Article  CAS  PubMed  Google Scholar 

  69. Olson NC, Doyle MF, Jenny NS, Huber SA, Psaty BM, Kronmal RA, et al. Decreased naive and increased memory CD4(+) T cells are associated with subclinical atherosclerosis: the multi-ethnic study of atherosclerosis. PLoS One. 2013;8(8):e71498. doi:10.1371/journal.pone.0071498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaplan RC, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, et al. T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women. J Infect Dis. 2011;203(4):452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liuzzo G, Kopecky SL, Frye RL, O’Fallon WM, Maseri A, Goronzy JJ, et al. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999;100(21):2135–9.

    Article  CAS  PubMed  Google Scholar 

  72. Bergström I, Backteman K, Lundberg A, Ernerudh J, Jonasson L. Persistent accumulation of interferon-γ-producing CD8+ CD56+ T cells in blood from patients with coronary artery disease. Atherosclerosis. 2012;224(2):515–20.

    Article  PubMed  Google Scholar 

  73. Liuzzo G, Goronzy JJ, Yang H, Kopecky SL, Holmes DR, Frye RL, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000;101(25):2883–8.

    Article  CAS  PubMed  Google Scholar 

  74. Leon MA, Zuckerman S. Gamma interferon: a central mediator in atherosclerosis. Inflamm Res. 2005;54(10):395–411.

    Article  CAS  PubMed  Google Scholar 

  75. Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther. 2007;5(2):265–82.

    Article  CAS  PubMed  Google Scholar 

  76. Liuzzo G, Biasucci LM, Trotta G, Brugaletta S, Pinnelli M, Digianuario G, et al. Unusual CD4+ CD28null T lymphocytes and recurrence of acute coronary events. J Am Coll Cardiol. 2007;50(15):1450–8.

    Article  CAS  PubMed  Google Scholar 

  77. Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002;347(1):5–12.

    Article  PubMed  Google Scholar 

  78. Yu HT, Youn JC, Lee J, Park S, Chi HS, Lee J, et al. Characterization of CD8CD57 T cells in patients with acute myocardial infarction. Cell Mol Immunol. 2014. doi:10.1038/cmi.2014.74.

    Google Scholar 

  79. Brugaletta S, Biasucci L, Pinnelli M, Biondi-Zoccai G, Di Giannuario G, Trotta G, et al. Novel anti-inflammatory effect of statins: reduction of CD4+ CD28null T lymphocyte frequency in patients with unstable angina. Heart. 2006;92(2):249–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Link A, Selejan S, Hewera L, Walter F, Nickenig G, Böhm M. Rosuvastatin induces apoptosis in CD4+ CD28null T cells in patients with acute coronary syndromes. Clin Res Cardiol. 2011;100(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  81. Youn J-C, Yu HT, Lim BJ, Koh MJ, Lee J, Chang D-Y, et al. Immunosenescent CD8+ T cells and CXC chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension. 2013;62(1):126–33.

    Article  CAS  PubMed  Google Scholar 

  82. Madhur MS, Harrison DG. Senescent T cells and hypertension new ideas about old cells. Hypertension. 2013;62(1):13–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Trott DW, Thabet SR, Kirabo A, Saleh MA, Itani H, Norlander AE, et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension. 2014;64(5):1108–15. doi:10.1161/HYPERTENSIONAHA.114.04147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014;124(10):4642–56. doi:10.1172/JCI74084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI13C0715).

Conflict of interest

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eui-Cheol Shin or Won-Woo Lee.

Additional information

Eui-Cheol Shin and Won-Woo Lee have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H.T., Park, S., Shin, EC. et al. T cell senescence and cardiovascular diseases. Clin Exp Med 16, 257–263 (2016). https://doi.org/10.1007/s10238-015-0376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-015-0376-z

Keywords

Navigation