Skip to main content
Log in

Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Muscle cells are frequently subjected to both mechanical and oxidative stresses in various physiological and pathological situations. To explore the mechanical mechanism of muscle cell damage under loading and oxidative stresses, we experimentally studied the effects of extrinsic hydrogen peroxides on the actin cytoskeletal structure in C2C12 myoblasts and presented a finite element (FE) analysis of how such changes in the actin cytoskeletal structure affected a myoblast’s capability to resist damage under compression. A confocal-based cell-specific FE model was built to parametrically study the effects of stress fiber density, fiber cross-sectional area, fiber tensile prestrain, as well as the elastic moduli of the stress fibers, actin cortex, nucleus and cytoplasm. The results showed that a decrease in the elastic moduli of both the stress fibers and actin cortex could increase the average tensile strain on the actin cortex–membrane structure and reduce the apparent cell elastic modulus. Assuming the cell would die when a certain percentage of membrane elements were strained beyond a threshold, a lower elastic modulus of actin cytoskeleton would compromise the compressive resistance of a myoblast and lead to cell death more readily. This model was used with a Weibull distribution function to successfully describe the extent of myoblasts damaged in a monolayer under compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barreto S, Clausen CH, Perrault CM, Fletcher DA, Lacroix D (2013) A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomaterials 34(26):6119–6126

    Article  Google Scholar 

  • Barreto S, Perrault CM, Lacroix D (2014) Structural finite element analysis to explain cell mechanics variability. J Mech Behav Biomed Mater 38:219–231

    Article  Google Scholar 

  • Bausch AR, Möller W, Sackmann E (1999) Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J 76(1):573–579

    Article  Google Scholar 

  • Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263

    Article  Google Scholar 

  • Caille N, Thoumine O, Tardy Y, Meister J (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35(2):177–187

    Article  Google Scholar 

  • Canović EP, Seidl DT, Polio SR, Oberai AA, Barbone PE, Stamenović D, Smith ML (2014) Biomechanical imaging of cell stiffness and prestress with subcellular resolution. Biomech Model Mechanobiol 13(3):665–678

    Article  Google Scholar 

  • Collinsworth AM, Zhang S, Kraus WE, Truskey GA (2002) Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am J Physiol Cell Physiol 283(4):C1219–C1227

    Article  Google Scholar 

  • Deguchi S, Ohashi T, Sato M (2005) Evaluation of tension in actin bundle of endothelial cells based on preexisting strain and tensile properties measurements. Mol Cell Biomech 2(3):125

    Google Scholar 

  • Duan X, Chan KT, Lee KKH, Mak AFT (2015) Oxidative stress and plasma membrane repair in single myoblasts after femtosecond laser photoporation. Ann Biomed Eng 43(11):2735–2744

    Article  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  Google Scholar 

  • Gavara N, Chadwick RS (2015) Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging. Biomech Model Mechanobiol 1–13

  • Griffin MA, Sen S, Sweeney HL, Discher DE (2004) Adhesion-contractile balance in myocyte differentiation. J Cell Sci 117(24):5855–5863

    Article  Google Scholar 

  • Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269(3):781–786

    Article  Google Scholar 

  • Huot J, Houle F, Marceau F, Landry J (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80(3):383–392

    Article  Google Scholar 

  • Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34

    Article  Google Scholar 

  • Knight MM, Toyoda T, Lee DA, Bader DL (2006) Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose. J Biomech 39(8):1547–1551

    Article  Google Scholar 

  • Kreis TE, Birchmeier W (1980) Stress fiber sarcomeres of fibroblasts are contractile. Cell 22(2):555–561

    Article  Google Scholar 

  • Leccia E, Batonnet-Pichon S, Tarze A, Bailleux V, Doucet J, Pelloux M, Delort F, Pizon V, Vicart P, Briki F (2013) Cyclic stretch reveals a mechanical role for intermediate filaments in a desminopathic cell model. Phys Biol 10(1):016001

    Article  Google Scholar 

  • Liu L, Yuan W, Wang J (2010) Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol 9(6):659–670

    Article  Google Scholar 

  • Lu L, Feng Y, Hucker WJ, Oswald SJ, Longmore GD, Yin FCP (2008a) Actin stress fiber pre-extension in human aortic endothelial cells. Cell Cotil Cytoskelet 65(4):281–294

    Article  Google Scholar 

  • Lu L, Oswald SJ, Ngu H, Yin FCP (2008b) Mechanical properties of actin stress fibers in living cells. Biophys J 95(12):6060–6071

    Article  Google Scholar 

  • Ma Z, Wu YS, Mak AFT (2015) Rheological behavior of actin stress fibers in myoblasts after nanodissection: effects of oxidative stress. Biorheology 1–10 (Preprint)

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2008) Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 82(5):273–299

    Article  Google Scholar 

  • Neisch AL, Fehon RG (2011) Ezrin, radixin and moesin: key regulators of membrane–cortex interactions and signaling. Curr Opin Cell Biol 23(4):377–382

    Article  Google Scholar 

  • Ofek G, Wiltz DC, Athanasiou KA (2009) Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells. Biophys J 97(7):1873–1882

    Article  Google Scholar 

  • Or-Tzadikario S, Gefen A (2011) Confocal-based cell-specific finite element modeling extended to study variable cell shapes and intracellular structures: the example of the adipocyte. J Biomech 44(3):567–573

    Article  Google Scholar 

  • Pan NC, Ma JJ, Peng HB (2012) Mechanosensitivity of nicotinic receptors. Pflugers Arch 464(2):193–203

    Article  Google Scholar 

  • Peeters EA, Oomens CW, Bouten CV, Bader DL, Baaijens FP (2005a) Viscoelastic properties of single attached cells under compression. J Biomech Eng 127(2):237–243

    Article  Google Scholar 

  • Peeters EAG, Oomens CWJ, Bouten CVC, Bader DL, Baaijens FPT (2005b) Mechanical and failure properties of single attached cells under compression. J Biomech 38(8):1685–1693

    Article  Google Scholar 

  • Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD (2014) Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci 111(7):2447–2452

    Article  Google Scholar 

  • Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78(1):520–535

    Article  Google Scholar 

  • Salbreux G, Charras G, Paluch E (2012) Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 22(10):536–545

    Article  Google Scholar 

  • Sbrana F, Sassoli C, Meacci E, Nosi D, Squecco R, Paternostro F, Tiribilli B, Zecchi-Orlandini S, Francini F, Formigli L (2008) Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. Am J Physiol Cell Physiol 295(1):C160–C172

    Article  Google Scholar 

  • Sheehy SP, Grosberg A, Parker KK (2012) The contribution of cellular mechanotransduction to cardiomyocyte form and function. Biomech Model Mechanobiol 11(8):1227–1239

    Article  Google Scholar 

  • Slomka N, Gefen A (2010) Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics. J Biomech 43(9):1806–1816

    Article  Google Scholar 

  • Slomka N, Gefen A (2011) Cell-to-cell variability in deformations across compressed myoblasts. J Biomech Eng 133(8):081007

    Article  Google Scholar 

  • Slomka N, Gefen A (2012) Relationship between strain levels and permeability of the plasma membrane in statically stretched myoblasts. Ann Biomed Eng 40(3):606–618

    Article  Google Scholar 

  • Slomka N, Oomens CW, Gefen A (2011) Evaluating the effective shear modulus of the cytoplasm in cultured myoblasts subjected to compression using an inverse finite element method. J Mech Behav Biomed Mater 4(7):1559–1566

    Article  Google Scholar 

  • Stricker J, Falzone T, Gardel ML (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43(1):9–14

    Article  Google Scholar 

  • Sun S, Wong S, Mak A, Cho M (2014) Impact of oxidative stress on cellular biomechanics and rho signaling in C2C12 myoblasts. J Biomech 47(15):3650–3656

    Article  Google Scholar 

  • Wakatsuki T, Schwab B, Thompson NC, Elson EL (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci 114(5):1025–1036

    Google Scholar 

  • Wang N, Naruse K, Stamenović D, Fredberg JJ, Mijailovich SM, Tolić-Nørrelykke IM, Polte T, Mannix R, Ingber DE (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci 98(14):7765–7770

    Article  Google Scholar 

  • Wang N, Tolić-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenović D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616

    Article  Google Scholar 

  • Wang N, Stamenovic D (2000) Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol 279:188–194

    Google Scholar 

  • Wirtz D (2009) Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys 38:301–326

    Article  Google Scholar 

  • Wong SW, Sun S, Cho M, Lee KK, Mak AFT (2015) \({\text{ H }_2}{\text{ O }_2}\) exposure affects myotube stiffness and actin filament polymerization. Ann Biomed Eng 43(5):1178–1188

    Article  Google Scholar 

  • Yan YX, Gong YW, Guo Y, Lv Q, Guo C, Zhuang Y, Zhang Y, Li R, Zhang XZ (2012) Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation. PloS One 7(4):e35709

    Article  Google Scholar 

  • Yao Y, Xiao Z, Wong SW, Hsu Y, Cheng T, Chang C, Bian L, Mak A (2015) The effects of oxidative stress on the compressive damage thresholds of C2C12 mouse myoblasts—implications for deep tissue injury. Ann Biomed Eng 43(2):287–296

    Article  Google Scholar 

  • Yim EK, Sheetz MP (2012) Force-dependent cell signaling in stem cell differentiation. Stem Cell Res Ther 3(5):41

    Article  Google Scholar 

  • Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JCM (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118(16):3695–3703

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Hong Kong Research Grant Council (RGC Ref. No. CUHK415413). And we thank Mr. Chan Jiajie for facilitating the operation of confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur F. T. Mak.

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Lacroix, D. & Mak, A.F.T. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis. Biomech Model Mechanobiol 15, 1495–1508 (2016). https://doi.org/10.1007/s10237-016-0779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0779-0

Keywords

Navigation