Skip to main content
Log in

Oxidative Stress and Plasma Membrane Repair in Single Myoblasts After Femtosecond Laser Photoporation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cell membranes are susceptible to biophysical damages. These biophysical damages often present themselves in challenging oxidative environments, such as in chronic inflammation. Here we report the damage evolution after single myoblasts were individually subjected to femtosecond (fs) laser photoporation on their plasma membranes under normal and oxidative conditions. A well-characterized tunable fs laser was coupled with a laser scanning confocal microscope. The post-damage wound evolution was documented by real-time imaging. The fs laser could generate a highly focused hole at a targeted site of the myoblast plasma membrane. The initial hole size depended on the laser dosage in terms of power and exposure duration. With the same laser power and irradiation duration, photoporation invoked bigger holes in the oxidative groups than in the control. Myoblasts showed difficulty in repairing holes with initial size beyond certain threshold. Within the threshold, holes could apparently be resealed within 100 s under the normal condition; while in oxidative condition, the resealing process could take 100–300 s. The hole-resealing capacity of myoblasts was compromised under oxidative stress particularly when the oxidative exposure was chronic. It is interesting to note that brief exposure to oxidative stress apparently could promote resealing in myoblasts after photoporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abreu-Blanco, M. T., J. M. Verboon, and S. M. Parkhurst. Cell wound repair in Drosophila occurs through three distinct phases of membrane and cytoskeletal remodeling. J. Cell Biol. 193(3):455–464, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Abreu-Blanco, M. T., J. M. Verboon, and S. M. Parkhurst. Single cell wound repair: dealing with life’s little traumas. Bioarchitecture 1(3):114–121, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Antkowiak, M., M. L. Torres-Mapa, D. J. Stevenson, K. Dholakia, and F. J. Gunn-Moore. Femtosecond optical transfection of individual mammalian cells. Nat. Protoc. 8(6):1216–1233, 2013.

    Article  PubMed  Google Scholar 

  4. Behl, C. Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Prog. Neurobiol. 57(3):301–323, 1999.

    Article  CAS  PubMed  Google Scholar 

  5. Benink, H. A., and W. M. Bement. Concentric zones of active RhoA and Cdc42 around single cell wounds. J. Cell Biol. 168(3):429–439, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cachofeiro, V., M. Goicochea, S. G. de Vinuesa, P. Oubiña, V. Lahera, and J. Luño. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. 74:S4–S9, 2008.

    Article  Google Scholar 

  7. Cai, C., H. Masumiya, N. Weisleder, N. Matsuda, M. Nishi, M. Hwang, J. Ko, P. Lin, A. Thornton, X. Zhao, Z. Pan, S. Komazaki, M. Brotto, H. Takeshima, and J. Ma. MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol. 11(1):56–64, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Celis, J. E. Microinjection of somatic cells with micropipettes: comparison with other transfer techniques. Biochem. J. 223(2):281, 1984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Davies, K. J. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50(4–5):279–289, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Dean, D. A., D. Machado-Aranda, K. Blair-Parks, A. V. Yeldandi, and J. L. Young. Electroporation as a method for high-level nonviral gene transfer to the lung. Gene Ther. 10(18):1608–1615, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Gattass, R. R., and E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2(4):219–225, 2008.

    Article  CAS  Google Scholar 

  12. Halliwell, B. Oxidative stress and cancer: have we moved forward? Biochem. J. 401:1–11, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Harding, H. P., Y. Zhang, H. Zeng, I. Novoa, P. D. Lu, M. Calfon, N. Sadri, C. Yun, B. Popko, R. Paules, D. F. Stojdl, J. C. Bell, T. Hettmann, J. M. Leiden, and D. Ron. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11(3):619–633, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Hu, Yaxin, Jennifer M. F. Wan, and Alfred C. H. Yu. Membrane perforation and recovery dynamics in microbubble-mediated sonoporation. Ultrasound Med. Biol. 39(12):2393–2405, 2013.

    Article  PubMed  Google Scholar 

  15. Liu, J., T. N. Lewis, and M. R. Prausnitz. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm. Res. 15(6):918–924, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Mandato, C. A., and W. M. Bement. Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J. Cell Biol. 154(4):785–798, 2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. McNeil, A. K., U. Rescher, V. Gerke, and P. L. McNeil. Requirement for annexin A1 in plasma membrane repair. J. Biol. Chem. 281(46):35202–35207, 2006.

    Article  CAS  PubMed  Google Scholar 

  18. McNeil, P. L., and R. A. Steinhardt. Loss, restoration, and maintenance of plasma membrane integrity. J. Cell Biol. 137(1):1–4, 1997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. McNeil, P. L., and R. A. Steinhardt. Plasma membrane disruption: repair, prevention, adaptation. Annu. Rev. Cell Dev. Boil. 19(1):697–731, 2003.

    Article  CAS  Google Scholar 

  20. Pawley, J. Handbook of Biological Confocal Microscopy. Springer Science & Business Media, 2006.

  21. Powers, S. K., A. N. Kavazis, and J. M. McClung. Oxidative stress and disuse muscle atrophy. J. Appl. Physiol. 102(6):2389–2397, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Serpersu, E. H., K. Kinosita, and T. Y. Tsong. Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim. Biophys. Acta. (BBA)-Biomembr. 812(3):779–785, 1985.

    Article  CAS  Google Scholar 

  23. Siu, P. M., Y. Wang, and S. E. Alway. Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes. Life Sci. 84(13):468–481, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sonnemann, K. J., and W. M. Bement. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Boil. 27:237–263, 2011.

    Article  CAS  Google Scholar 

  25. Sun, S., S. Wong, A. Mak, and M. Cho. Impact of oxidative stress on cellular biomechanics and rho signaling in C2C12 myoblasts. J. Biomech. 47(15):3650–3656, 2014.

    Article  PubMed  Google Scholar 

  26. Tatham, P. E., and B. D. Gomperts. Rat mast cells degranulate in response to microinjection of guanine nucleotide. J. Cell Sci. 98(2):217–224, 1991.

    CAS  PubMed  Google Scholar 

  27. Terasaki, M., K. Miyake, and P. L. McNeil. Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle–vesicle fusion events. J. Cell Biol. 139(1):63–74, 1997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wong, S. W., S. Sun, M. Cho, K. K. Lee, and A. F. T. Mak. H2O2 exposure affects myotube stiffness and actin filament polymerization. Ann. Biomed. Eng. 1–11, 2014.

  29. Yao, Y., Z. Xiao, S. W. Wong, Y. Hsu, T. Cheng, C. Chang, L. Bian, and A. Mak. The effects of oxidative stress on the compressive damage thresholds of C2C12 mouse myoblasts—implications for deep tissue injury. Cells. Ann. Biomed. Eng. 43(2):287–296, 2015.

    Article  PubMed  Google Scholar 

  30. Zhou, Y., J. Shi, J. Cui, and C. X. Deng. Effects of extracellular calcium on cell membrane resealing in sonoporation. J Control Release 126(1):34–43, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Hong Kong Research Grants Council for its General Research Funding support for this work through the project Grant CUHK415413.

Conflict of Interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur F. T. Mak.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Chan, K.T., Lee, K.K.H. et al. Oxidative Stress and Plasma Membrane Repair in Single Myoblasts After Femtosecond Laser Photoporation. Ann Biomed Eng 43, 2735–2744 (2015). https://doi.org/10.1007/s10439-015-1341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1341-4

Keywords

Navigation