Skip to main content
Log in

Non-invasive, energy-based assessment of patient-specific material properties of arterial tissue

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The mechanical properties of human biological tissue vary greatly. The determination of arterial material properties should be based on experimental data, i.e. diameter, length, intramural pressure, axial force and stress-free geometry. Currently, clinical data provide only non-invasively measured pressure-diameter data for superficial arteries (e.g. common carotid and femoral artery). The lack of information forces us to take into account certain assumptions regarding the in situ configuration to estimate material properties in vivo. This paper proposes a new, non-invasive, energy-based approach for arterial material property estimation. This approach is compared with an approach proposed in the literature. For this purpose, a simplified finite element model of an artery was used as a mock experimental situation. This method enables exact knowledge of the actual material properties, thereby allowing a quantitative evaluation of material property estimation approaches. The results show that imposing conditions on strain energy can provide a good estimation of the material properties from the non-invasively measured pressure and diameter data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( {\Psi } \) :

Strain energy density function

\( {\Psi _\mathrm{mat}}\) :

Isotropic contribution of the extracellular matrix material to the strain energy density function

\( {\Psi _\mathrm{col}} \) :

Anisotropic contribution of the collagen fibre families to the strain energy density function

\( I_1 \) :

First invariant of the right Cauchy–Green strain tensor

\( I_4 \) :

Invariant related to the orientation of the collagen fibre families

\( \lambda _i \) :

\( i = r,\theta ,z \), three principal stretch ratios in the radial, circumferential and the axial directions of the artery, respectively

\( \mu \) :

Stress-like parameter representing the stiffness of the matrix material

\( k_1 \) :

Stress-like parameter representing the stiffness of the collagen fibres

\( k_2 \) :

Dimensionless parameter of the collagen fibres

\( \alpha \) :

Angle between the mean collagen fibre direction and the circumferential direction of the artery

\( \kappa \) :

Parameter related to the dispersion of the collagen fibres

\( L \) :

Initial axial sample length

\( l \) :

Deformed axial sample length

\( R_\mathrm{o} \) :

Outer radius in the stress-free configuration

\( R_\mathrm{i} \) :

Inner radius in the stress-free configuration

\( \rho _\mathrm{o} \) :

Outer radius in the unloaded configuration

\( \rho _\mathrm{i} \) :

Inner radius in the unloaded configuration

\( r_\mathrm{o} \) :

Outer radius in the loaded configuration

\( r_\mathrm{i} \) :

Inner radius in the loaded configuration

\( R \) :

Initial radius at a certain position

\( r \) :

Deformed radius at a certain position

\( {\Theta _0} \) :

Opening angle in the stress-free configuration

\( \varvec{F_1} \) :

Deformation gradient relating the stress-free and the loaded configuration

\( \varvec{F_2} \) :

Deformation gradient relating the unloaded and the loaded configuration

\( {\mathcal {R}}_0 \) :

Stress-free configuration

\( {\mathcal {R}}_1 \) :

Unloaded configuration

\( {\mathcal {R}}_2 \) :

Loaded configuration

\( R,\theta ,z \) :

Radial, circumferential and axial cylindrical coordinates in the stress-free configuration

\( \rho ,\phi ,\xi \) :

Radial, circumferential and axial cylindrical coordinates in the unloaded configuration

\( r,\theta ,z \) :

Radial, circumferential and axial cylindrical coordinates in the stress-free configuration

\( \varLambda \) :

Axial stretch ratio between the stress-free and the unloaded configuration

\( \lambda \) :

Axial stretch ratio between the unloaded and the loaded configuration

\( \lambda _z \) :

Total stretch in the axial direction

\( H \) :

Wall thickness in the stress-free and unloaded configuration

\( h \) :

Wall thickness in the loaded configuration

\( j \) :

Index going from 1 to \(n\), \(n\) being the total number of data points considered

\( k \) :

Index representing different points throughout the arterial wall, going from 1 at the inner wall to \(m\) at the outer wall

\( \varvec{F}^\mathrm{FEM} \) :

Reduced axial forces extracted from the simulation

\( \varvec{r_\mathrm{o}} \) :

Outer radii extracted from the simulation

\( \varvec{P}^\mathrm{FEM} \) :

Pressures extracted from the simulation

\(\textit{pars}\) :

Vector of fitted parameters

\( w_\mathrm{p} \) :

Weighting factor for the pressure in the objective function

\( w_\mathrm{f} \) :

Weighting factor for the force in the objective function

\( \varvec{P}^\mathrm{mod} \) :

Intraluminal pressures predicted by the function \({\Psi }\)

\( \varvec{F}^\mathrm{mod} \) :

Reduced axial forces predicted by the function \({\Psi }\)

\( \varvec{A}^\mathrm{mod} \) :

Cross-sectional area predicted by the function \({\Psi }\)

\( \lambda _{\mathrm{o}} \) :

Circumferential axial stretch at the outer wall

\( \lambda _{\mathrm{i}} \) :

Circumferential axial stretch at the inner wall

\( \varvec{\sigma }_{\theta \theta }^\mathrm{mod} \) :

Circumferential stresses predicted by the function \({\Psi }\)

\( \varvec{\sigma }_{\theta \theta } \) :

Circumferential stress calculated by enforcing the equilibrium

\( \varvec{\sigma _{zz}}^\mathrm{mod} \) :

Axial stresses predicted by the function \({\Psi }\)

\( \varvec{\sigma }_{zz} \) :

Axial stresses calculated by enforcing the equilibrium

\( F^\mathrm{est} \) :

Estimated reduced axial force

\( \bar{P} \) :

An arbitrary pressure, e.g. 100 mmHg

\( \bar{r}_{\mathrm{i}} \) :

Inner radius related to the pressure \(\bar{P}\)

\( \bar{h}_{\mathrm{i}} \) :

Wall thickness related to the pressure \(\bar{P}\)

\( \gamma \) :

Ratio of the axial to the circumferential stresses at the pressure \(\bar{P}\)

\( w_{{\Psi 1}} \) :

Weighting factor for the strain energy density across the wall thickness

\( w_{{\Psi 2}} \) :

Weighting factor for the strain energy density at diastole

\( F^\mathrm{average} \) :

Average of \(\varvec{F}^\mathrm{mod}\)

\( \varvec{{\Psi }}^{\mathrm{dias, mod}} \) :

Strain energy density at diastole

\(\varvec{{\Psi }}^\mathrm{average} \) :

Average of \({\varvec{{\Psi }}}^\mathrm{dias,mod}\)

\( \varvec{{\Psi }}^{\mathrm{dias, mod}}_{\mathrm{coll}} \) :

Collagen strain energy density at diastole

\( \varvec{{\Psi }}^{\mathrm{dias,mod}}_{\mathrm{mat}}\) :

Matrix strain energy density at diastole

References

  • Böl M, Abilez OJ, Assar AN, Zarins CK, Kuhl E (2012) In vitro/in silico characterization of active and passive stresses in cardiac muscle. Int J Multiscale Comput Eng 10(2):171–188

    Article  Google Scholar 

  • Cardamone L, Valentín A, Eberth JF, Humphrey JD (2009) Origin of axial prestretch and residual stress in arteries. Biomech Model Mechanobiol 8(6):431–446

    Article  Google Scholar 

  • Chuong CJ, Fung YC (1986) Residual stress in arteries. In: Schmid-Schönbein GW, Woo L-Y, Zweifach BW (eds) Frontiers in biomechanics, part II. Springer, New York, pp 117–129

    Chapter  Google Scholar 

  • Famaey N, Sommer G, Holzapfel GA (2012) Arterial clamping: finite element simulation and in vivo validation. J Mech Behav Biomed Mater 12:107–118

    Article  Google Scholar 

  • Famaey N, Vander Sloten J (2013a) A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomech Model Mechanobiol 12(1):123–136

    Article  Google Scholar 

  • Famaey N, Štrbac V, Vander Sloten J (2013b) Intraoperative damage monitoring of endoclamp balloon expansion using real-time finite element modeling. Springer, Berlin

    Book  Google Scholar 

  • Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol 237(5):H620–H631

    Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  • Haskett D, Johnson G, Zhou A, Utzinger U (2010) Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 9(6):725–736

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1–3):1–48

    MATH  MathSciNet  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues and organs. Springer, Berlin

    Book  Google Scholar 

  • Masson I, Boutouyrie P, Laurent S, Humphrey JD, Zidi M (2008) Characterization of arterial wall mechanical behavior and stresses from human clinical data. J Biomech 41(12):2618–2627

    Article  Google Scholar 

  • Murtada S-I, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9(6):749–762

    Article  Google Scholar 

  • Nichols M, Townsend N, Scarborough P, Rayner M (2013) European cardiovascular disease statistics 4th edition 2012: euroheart ii. Eur Heart J 34(39):3007

    Article  Google Scholar 

  • Ogden RW (2009) Anisotropy and nonlinear elasticity in arterial wall mechanics. In: Holzapfel GA, Ogden RW (eds) Biomechanical modelling at the molecular, cellular and tissue levels. Springer, New York, pp 179–258, CISM Courses and Lectures no. 508

  • Rachev A, Greenwald SE (2003) Residual strains in conduit arteries. J Biomech 36(5):661–670

    Article  Google Scholar 

  • Rietzschel E-R, De Buyzere ML, Bekaert S, Segers P, De Bacquer D, Cooman L, Van Damme P, Cassiman P, Langlois M, van Oostveldt P, Verdonck P, De Backer G, Gillebert TC, A. I (2007) Rationale, design, methods and baseline characteristics of the asklepios study. Eur J Cardiovasc Prev Rehabil 14(2):179–191

    Article  Google Scholar 

  • Roach MR, Burton AC (1957) The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 35(8):681–690

    Article  Google Scholar 

  • Schulze-Bauer CAJ, Holzapfel GA (2003) Determination of constitutive equations for human arteries from clinical data. J Biomech 36(2):165–169

    Article  Google Scholar 

  • Stålhand J (2009) Determination of human arterial wall parameters from clinical data. Biomech Model Mechanobiol 8(2):141–148

    Article  Google Scholar 

  • Stålhand J, Klarbring A (2005) Aorta in vivo parameter identification using an axial force constraint. Biomech Model Mechanobiol 3(4):191–199

    Article  Google Scholar 

  • van der Horst A, van den Broek CN, van de Vosse FN, Rutten MCM (2012) The fiber orientation in the coronary arterial wall at physiological loading evaluated with a two-fiber constitutive model. Biomech Model Mechanobiol 11(3–4):533–542

    Article  Google Scholar 

  • Vito RP, Dixon SA (2003) Blood vessel constitutive models-1995–2002. Annu Rev Biomed Eng 5:413–439

    Article  Google Scholar 

  • Weizsäcker HW, Lambert H, Pascale K (1983) Analysis of the passive mechanical properties of rat carotid arteries. J Biomech 16(9):703–715

    Article  Google Scholar 

  • Wittek A, Karatolios K, Bihari P, Schmitz-Rixen T, Moosdorf R, Vogt S, Blase C (2013) In vivo determination of elastic properties of the human aorta based on 4d ultrasound data. J Mech Behav Biomed Mater 27:167–183

    Article  Google Scholar 

  • Wolinsky H, Glagov S (1964) Structural basis for the static mechanical properties of the aortic media. Circ Res 14:400–413

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Research Foundation Flanders (FWO Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Smoljkić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smoljkić, M., Vander Sloten, J., Segers, P. et al. Non-invasive, energy-based assessment of patient-specific material properties of arterial tissue. Biomech Model Mechanobiol 14, 1045–1056 (2015). https://doi.org/10.1007/s10237-015-0653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0653-5

Keywords

Navigation