Skip to main content
Log in

Bone remodelling of the scapula after a total shoulder arthroplasty

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

According to Wolff’s law, the changes in stress after a prosthesis implantation may modify the shape and internal structure of bone, thus compromising the long-term prosthesis fixation and, consequently, be a significant factor for glenoid loosening. The aim of the present study is to evaluate the changes in the bone adaptation process of the scapula after an anatomical and reverse total shoulder arthroplasty. Five finite element models of the implanted scapula are developed considering the implantation of three anatomical, cemented, all-polyethylene components; an anatomical, cementless, metal-backed component; and a reverse, all-metal component. The methodology followed to simulate the bone adaptation of the scapula was previously validated for the intact model, prior to the prosthesis implantation. Additionally, the influence of the bone quality on the adaptation process is also investigated by considering an osteoporotic condition. The results show that the stress shielding phenomenon is more concerning in cementless, metal-based components than in cemented, all-polyethylene components, regardless of the bone quality. Consequently, as far as the bone adaptation process of the bone is concerned, cemented, all-polyethylene components are better suited for the treatment of the shoulder joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahir SP, Walker PS, Squire-Taylor CJ, Blunn GW, Bayley JIL (2004) Analysis of glenoid fixation for a reversed anatomy fixed-fulcrum shoulder replacement. J Biomech 37(11):1699–1708. doi:10.1016/j.jbiomech.2004.01.031

    Article  Google Scholar 

  • Bohsali KI, Wirth MA, Rockwood CA Jr (2006) Complications of total shoulder arthroplasty. J Bone Joint Surg Am 88–A(10):2279–2292

    Article  Google Scholar 

  • Bono JV, Scott RD, Ranawat CS, Turner RH (2005) Revision total knee arthroplasty. Springer, New York

    Book  Google Scholar 

  • Carter DR, Wong M (2003) Modelling cartilage mechanobiology. Philos Trans R Soc Lond B Biol Sci 358(1437):1461–1471. doi:10.1098/rstb.2003.1346

    Google Scholar 

  • Christen P, Van Rietbergen B, Lambers FM, Muller R, Ito K (2012) Bone morphology allows estimation of loading history in a murine model of bone adaptation. Biomech Model Mechanobiol 11(3–4):483–492. doi:10.1007/s10237-011-0327-x

    Article  Google Scholar 

  • Clement ND, Mathur K, Colling R, Stirrat AN (2010) The metal-backed glenoid component in rheumatoid disease: eight- to fourteen-year follow-up. J Should Elbow Surg 19(5):749–756. doi:10.1016/j.jse.2009.11.005

    Article  Google Scholar 

  • Cohen B, Rushton N (1995) Bone remodelling in the proximal femur after Charnley total hip arthroplasty. J Bone Joint Surg British 77(5):815–819

    Google Scholar 

  • Farshad M, Gerber C (2010) Reverse total shoulder arthroplasty—from the most to the least common complication. Int orthop 34(8):1075–1082. doi:10.1007/s00264-010-1125-2

    Article  Google Scholar 

  • Fealy S, Sperling JW, Warren RF, Craig EV (2008) Shoulder arthroplasty: complex issues in the primary and revision setting. Thieme Medical Publishers Inc., New York

    Google Scholar 

  • Fernandes P, Rodrigues H, Jacobs C (1999) A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Eng 2(2):125–138. doi:10.1080/10255849908907982

    Article  Google Scholar 

  • Folgado J, Fernandes PR, Guedes JM, Rodrigues HC (2004) Evaluation of osteoporotic bone quality by a computational model for bone remodeling. Comput Struct 82(17–19):1381–1388. doi:10.1016/j.compstruc.2004.03.033

    Article  Google Scholar 

  • Fraldi M, Esposito L, Perrella G, Cutolo A, Cowin SC (2010) Topological optimization in hip prosthesis design. Biomech Model Mechanobiol 9(4):389–402. doi:10.1007/s10237-009-0183-0

    Article  Google Scholar 

  • Gefen A (2002) Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Med Biol Eng Comput 40(3):311–322. doi:10.1007/BF02344213

    Article  Google Scholar 

  • Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ (2002) Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech 35(2):267–275

    Article  Google Scholar 

  • Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenisation method with adaptive finite element methods. Comput Meth Appl Mech Eng 83(2):143–198. doi:10.1016/0045-7825(90)90148-F

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta S, Van der Helm FCT, van Keulen F (2004a) The possibilities of uncemented glenoid component—a finite element study. Clin Biomech 19(3):292–302. doi:10.1016/j.clinbiomech.2003.12.002

    Article  Google Scholar 

  • Gupta S, Van der Helm FCT, van Keulen F (2004) Stress analysis of cemented glenoid prostheses in total shoulder arthroplasty. J Biomech 37(11):1777–1786. doi:10.1016/j.jbiomech.2004.02.001

    Article  Google Scholar 

  • Hasan SS, Leith JM, Campbell B, Kapil R, Smith KL, Matsen FA 3rd (2002) Characteristics of unsatisfactory shoulder arthroplasties. J Should Elbow Surg 11(5):431–441. doi:10.1067/mse.2002.125806

    Article  Google Scholar 

  • Hopkins AR, Hansen UN, Amis AA (2005) Finite element models of total shoulder replacement: application of boundary conditions. Comput Methods Biomech Biomed Eng 8(1):39–44. doi:10.1080/10255840512331388155

    Article  Google Scholar 

  • Huiskes R (1993) Stress shielding and bone resorption in THA: clinical versus computer-simulations studies. Acta Orthop Belg 59(Suppl 1):118–129

    Google Scholar 

  • Lacroix D, Murphy LA, Prendergast PJ (2000) Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems. J Biomech Eng 122(4):430–436. doi:10.1115/1.1286318

    Article  Google Scholar 

  • Li J, Li H, Shi L, Fok ASL, Ucer C, Devlin H, Horner K, Silikas N (2007) A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent Mater 23(9):1073–1078. doi:10.1016/j.dental.2006.10.004

    Article  Google Scholar 

  • Matava MJ, Purcell DB, Rudzki JR (2005) Partial-thickness rotator cuff tears. Am J Sports Med 33(9):1405–1417. doi:10.1077/0363546505280213

    Article  Google Scholar 

  • Melis B, DeFranco MJ, Laderman A, Barthelemy R, Walch G (2011) The teres minor muscle in rotator cuff tendon tears. Skelet Radiol 40(10):1335–1344. doi:10.1007/s00256-011-1178-3

    Google Scholar 

  • Nagels J, Stokdijk M, Rozing PM (2003) Stress shielding and bone resorption in shoulder arthroplasty. J Should Elbow Surg 12(1):35–39. doi:10.1067/mse.2003.22

    Article  Google Scholar 

  • Ohta H, Kobayashi S, Saito N, Nawata M, Horiuchi H, Takaoka K (2003) Sequential changes in periprosthetic bone mineral density following total hip arthroplasty: a 3-year follow-up. J Bone Miner Metab 21(4):229–233. doi:10.1007/s00774-002-0414-2

    Google Scholar 

  • Pelletier MH, Langdown A, Gillies RM, Sonnabend DH, Walsh WR (2008) Photoelastic comparison of strains in the underlying glenoid with metal-backed and all-polyethylene implants. J Should Elbow Surg 17(5):779–783. doi:10.1016/j.jse.2008.01.138

    Article  Google Scholar 

  • Poitout DG (2004) Biomechanics and biomaterials in orthopedics. Springer, New York

    Book  Google Scholar 

  • Quental C, Folgado J, Fernandes PR, Monteiro J (2012a) Bone remodelling analysis of the humerus after a shoulder arthroplasty. Med Eng Phys 34(8):1132–1138. doi:10.1016/j.medengphy.2011.12.001

    Article  Google Scholar 

  • Quental C, Folgado J, Ambrósio J, Monteiro J (2012b) A multibody biomechanical model of the upper limb including the shoulder girdle. Multibody Syst Dyn 28(1–2):83–108. doi:10.1007/s11044-011-9297-0

    Article  MathSciNet  Google Scholar 

  • Quental C, Folgado J, Fernandes P, Monteiro J (2013a) Subject-specific bone remodelling of the scapula. Comput Methods Biomech Biomed Eng. doi:10.1080/10255842.2012.738198

  • Quental C, Folgado J, Fernandes P, Monteiro J, (2013b) Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb. Comput Methods Biomech Biomed Eng. doi:10.1080/10255842.2013.845879

  • Quental C, Folgado J, Ambrósio J, Monteiro J (2013c) Multibody system of the upper limb including a reverse shoulder prosthesis. J Biomech Eng 135(11):111005–111010. doi:10.1115/1.4025325

    Article  Google Scholar 

  • Rasmussen J, Sorensen AK, Olsen B (2012) Demographic data, clinical outcome and short-term survival after shoulder arthroplasty: 2320 shoulder arthroplasties reported to the Danish shoulder arthroplasty register. J Bone Joint Surg British 94–B(37):36

    Google Scholar 

  • Santos L, Romeu JC, Canhão H, Fonseca JE, Fernandes PR (2010) A quantitative comparison of a bone remodeling model with dual-energy X-ray absorptiometry and analysis of the inter-individual biological variability of femoral neck T-score. J Biomech 43(16):3150–3155. doi:10.1016/j.jbiomech.2010.07.028

    Article  Google Scholar 

  • Sarah J, Sanjay G, Sanjay S, Carolyn A, Emery R, Andrew A, Ulrich H (2010) Failure mechanism of the all-polyethylene glenoid implant. J Biomech 43(4):714–719. doi:10.1016/j.jbiomech.2009.10.019

    Article  Google Scholar 

  • Sharma GB, Debski RE, McMahon PJ, Robertson DD (2010) Effect of glenoid prosthesis design on glenoid bone remodeling: adaptive finite element based simulation. J Biomech 43(9):1653–1659. doi:10.1016/j.jbiomech.2010.03.004

    Article  Google Scholar 

  • Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inf Assoc 3(2):118–130. doi:10.1136/jamia.1996.96236280

    Article  Google Scholar 

  • Stone KD, Grabowski JJ, Cofield RH, Morrey BF, An KN (1999) Stress analyses of glenoid components in total shoulder arthroplasty. J Should Elbow Surg 8(2):151–158. doi:10.1016/S1058-2746(99)90009-5

    Article  Google Scholar 

  • Strauss EJ, Roche C, Flurin PH, Wright T, Zuckerman JD (2009) The glenoid in shoulder arthroplasty. J Should Elbow Surg 18(5):819–833. doi:10.1016/j.jse.2009.05.008

    Article  Google Scholar 

  • Suárez DR, Weinans H, van Keulen F (2012) Bone remodelling around a cementless glenoid component. Biomech Model Mechanobiol 11(6):903–913. doi:10.1007/s10237-011-0360-9

    Article  Google Scholar 

  • Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77(2):177–197. doi:10.1080/17453670610045902

    Article  Google Scholar 

  • Terrier A, Buchler P, Farron A (2005) Bone-cement interface of the glenoid component: stress analysis for varying cement thickness. Clin Biomech 20(7):710–717. doi:10.1016/j.clinbiomech.2005.03.010

    Article  Google Scholar 

  • Terrier A, Merlini F, Pioletti DP, Farron A (2009) Total shoulder arthroplasty: downward inclination of the glenoid component to balance supraspinatus deficiency. J Should Elbow Surg 18(3):360–365. doi:10.1016/j.jse.2008.11.008

    Article  Google Scholar 

  • Von Schroeder HP, Kuiper SD, Botte MJ (2001) Osseous anatomy of the scapula. Clin Orthop Relat Res 383:131–139

    Google Scholar 

Download references

Acknowledgments

This work was supported by the FCT through the project PTDC/SAU-BEB/103408/2008 and the PhD scholarship SFRH/BD/46311/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Folgado.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quental, C., Fernandes, P.R., Monteiro, J. et al. Bone remodelling of the scapula after a total shoulder arthroplasty. Biomech Model Mechanobiol 13, 827–838 (2014). https://doi.org/10.1007/s10237-013-0537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0537-5

Keywords

Navigation