Skip to main content
Log in

Transport of salt and freshwater in the Atlantic Subpolar Gyre

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Transport of salt in the Irminger Current, the northern branch of the Atlantic Subpolar Gyre coupling the eastern and western subpolar North Atlantic, plays an important role for climate variability across a wide range of time scales. High-resolution ocean modeling and observations indicate that salinities in the eastern subpolar North Atlantic decrease with enhanced circulation of the North Atlantic subpolar gyre (SPG). This has led to the perception that a stronger SPG also transports less salt westward. In this study, we analyze a regional ocean model and a comprehensive global coupled climate model, and show that a stronger SPG transports more salt in the Irminger Current irrespective of lower salinities in its source region. The additional salt converges in the Labrador Sea and the Irminger Basin by eddy transports, increases surface salinity in the western SPG, and favors more intense deep convection. This is part of a positive feedback mechanism with potentially large implications for climate variability and predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Belkin IM, Levitus S, Antonov J, Malmberg SA (1998) ‘Great salinity anomalies’ in the north atlantic. Prog Oceanogr 41:1–68

    Article  Google Scholar 

  • Bentsen M, Drange H (2000) Parameterizing surface fluxes in ocean models using the NCEP/NCAR reanalysis data. In: Regclim general technical report no 4. Norwegian Institute for Air Research, Kjeller, pp 149–158

  • Bentsen M, Drange H, Furevik T, Zhou T (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22(6-7):701–720

    Article  Google Scholar 

  • Born A, Levermann A (2010) The 8.2 ka event: abrupt transition of the subpolar gyre toward a modern North Atlantic circulation. Geochem Geophys Geosyst 11:Q06011

    Article  Google Scholar 

  • Born A, Mignot J (2012) Dynamics of decadal variability in the Atlantic subpolar gyre: a stochastically forced oscillator. Clim Dyn 39:461–474

    Article  Google Scholar 

  • Born A, Mignot J, Stocker TF (2015) Multiple equilibria as a possible mechanism for decadal variability in the North Atlantic Ocean. J Clim 28:8907–8922

    Article  Google Scholar 

  • Born A, Nisancioglu KH, Braconnot P (2010) Sea ice induced changes in ocean circulation during the Eemian. Clim Dyn 35(7):1361–1371

    Article  Google Scholar 

  • Born A, Nisancioglu KH, Risebrobakken B (2011) Late eemian warming in the nordic seas as seen in proxy data and climate models. Paleoceanography 26:PA2207

    Article  Google Scholar 

  • Born A, Stocker TF (2014) Two stable equilibria of the Atlantic Subpolar Gyre. J Phys Oceanogr 44:246–264

    Article  Google Scholar 

  • Born A, Stocker TF, Raible CC, Levermann A (2013) Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models?. Clim Dyn 40:2993–3007

    Article  Google Scholar 

  • Danabasoglu G, Bates S, Briegleb BP, Jayne SR, Jochum M, Large WG, Peacock S, Yeager SG (2012a) The CCSM4 ocean component. J Clim 25:1361–1389

    Article  Google Scholar 

  • Danabasoglu G, Ferrari R, McWilliams JC (2008) Sensitivity of an ocean general circulation model to a parameterization of near-surface eddy fluxes. J Clim 21:1192–1208

    Article  Google Scholar 

  • Danabasoglu G, Large WG, Briegleb BP (2010) Climate impacts of parameterized Nordic Sea overflows. J Geophys Res 115:C11005

    Article  Google Scholar 

  • Danabasoglu G, Yeager SG, Kwon Y-O, Tribbia JJ, Phillips AS, Hurrell JW (2012b) Variability of the atlantic meridional overturning circulation in CCSM4. J Clim 25:5153–5172

    Article  Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled Ocean-Atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Delworth TL, Zeng F (2012) Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophys Res Lett 39:L13702

    Article  Google Scholar 

  • Deshayes J, Curry R, Msadek R (2014) CMIP5 Model intercomparison of freshwater budget and circulation in the north atlantic. J Clim 27(19):3298–3317

    Article  Google Scholar 

  • Desprès A, Reverdin G, D’Ovidio F (2011) Mechanisms and spatial variability of meso scale frontogenesis in the northwestern subpolar gyre. Ocean Model 39:97–113

    Article  Google Scholar 

  • Dickson RR, Meincke J, Malmberg S-A, Lee AJ (1988) The “Great salinity anomaly” in the northern north atlantic 1968–1982. Prog Oceanogr 20:103–151

    Article  Google Scholar 

  • Drange H, Gerdes R, Gao Y, Karcher M, Kauker F, Bentsen M (2005) Ocean general circulation modelling of the nordic seas. In: Drange H, Dokken TM, Furevik T, Gerdes R, Berger W (eds) The nordic seas. An integrated perspective. AGU Geophysical Monograph Series no 158, Washington, DC, pp 199–219

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the north atlantic circulation. J Clim 14 :2266–2280

    Article  Google Scholar 

  • Eldevik T, Straneo F, Sandø AB, Furevik T (2005) Ventilation and spreading of Greenland sea water. In: Drange H, Dokken TM, Furevik T, Gerdes R, Berger W (eds) The nordic seas. an integrated perspective. AGU Geophysical Monograph Series no. 158, Washington DC, pp 89–103

  • Fox-Kemper B, Danabasoglu G, Ferrari R, Hallberg RW (2008a) Parameterizing submesoscale physics in global climate models. CLIVAR Exchanges 13:3–5

    Google Scholar 

  • Fox-Kemper B, Ferrari R, Hallberg R (2008b) Parameterization of mixed layer eddies. Part I: theory and diagnosis. J Phys Oceanogr 38:1145–1165

    Article  Google Scholar 

  • Frankignoul C, Deshayes J, Curry R (2009) The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation. Clim Dyn 33:777–783

    Article  Google Scholar 

  • Furevik T, Bentsen M, Drange H, Johannessen JA, Korablev A (2002) Temporal and spatial variability of the sea surface salinity in the Nordic Seas. J Geophys Res 107(C12):8009

    Article  Google Scholar 

  • Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the last 1500 years: an improved ice-core based index for climate models. J Geophys Res 113:D2311

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner L, Holland M, Hunke E, Jayne S, Lawrence D, Neale R, Rasch P, Vertenstein M, Worley P, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Häkkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559

    Article  Google Scholar 

  • Häkkinen S, Rhines PB (2009) Shifting surface currents in the northern North Atlantic Ocean. J Geophys Res 114:C04005

    Article  Google Scholar 

  • Häkkinen S, Rhines PB, Worthen DL (2011) Warm and saline events embedded in the meridional circulation of the northern North Atlantic. J Geophys Res 116:C03006

    Article  Google Scholar 

  • Hátún H, Sandø AB, Drange H, Bentsen M (2005a) Seasonal to decadal temperature variations in the faroe-shetland inflow waters. In: Drange H, Dokken TM, Furevik T, Gerdes R, Berger WH (eds) The nordic seas. An integrated perspective. AGU Geophysical Monograph Series no 158, Washington DC, pp 239–250

  • Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005b) Influence of the atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844

    Article  Google Scholar 

  • Herbaut C, Houssais M-N (2009) Response of the eastern North Atlantic subpolar gyre to the North Atlantic Oscillation. Geophys Res Lett 36:L17607

    Article  Google Scholar 

  • Holland MM, Bailey DA, Briegleb BP, Light B, Hunke E (2012) Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on arctic sea ice. J Clim 25:1413–1430

    Article  Google Scholar 

  • Holland MM, Finnis J, Serrenze MC (2006) Simulated arctic ocean freshwater budgets in the twentieth and twenty-first centuries. J Clim 19:6221–6242

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2008) CICE: the los alamos sea ice model user’s manual, version 4. Technical report, los alamos national laboratory tech. Report LA-CC-06-012

  • Irvali N, Ninneman US, Galaasen EV, Rosenthal Y, Kroon D, Oppo DW, Kleiven HF, Darling KF, Kissel C (2012) Rapid switches in subpolar north atlantic hydrography and climate during the last interglacial (MIS 5e). Paleoceanography 27:PA2207

    Article  Google Scholar 

  • Jahn A, Aksenov Y, de Cuevas B, de Steur L, Häkkinen S, Hansen E, Herbaut C, Houssais M, Karcher M, Kauker F, Lique C, Nguyen A, Pemberton P, Worthen D, Zhang J (2012a) Arctic ocean freshwater: how robust are model simulations?. J Geophys Res 117:C00D16

    Article  Google Scholar 

  • Jahn A, Sterling K, Holland MM, Kay JE, Maslanik JA, Bitz CM, Bailey DA, Stroeve J, Hunke EC, Lipscomb WH, Pollak DA (2012b) Late-twentieth-century simulation of arctic sea ice and ocean properties in the CCSM4. J Clim 25:1431–1452

    Article  Google Scholar 

  • Jochum M, Jahn A, Peacock S, Bailey DA, Fasullo JT, Kay J, Levis S, Otto-Bliesner B (2012) True to Milankovitch: glacial inception in the new community climate system model. J Clim 25:2226–2239

    Article  Google Scholar 

  • Karcher M, Gerdes R, Kauker F, Köberle C, Yashayaev I (2005) Arctic ocean change heralds North Atlantic freshening. Geophys Res Lett 32:L21606

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Wollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, den Dool HV, Jenne R, Fiorini M (2001) The NCEP-NCAR 50-year reanalysis, monthly means, CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268

    Article  Google Scholar 

  • Kleppin H, Jochum M, Otto-Bliesner B, Shields CA, Yeager S (2015). Stochastic atmospheric forcing as a cause of Greenland climate transitions. 28:7741–7763

    Google Scholar 

  • Koenigk T, Mikolajewicz U, Haak H, Jungclaus J (2007) Arctic freshwater export in the 20th and 21st centuries. J Geophys Res 112:G04S41

    Article  Google Scholar 

  • Kwon Y-O, Frankignoul C (2012) Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Clim Dyn 38:859–876

    Article  Google Scholar 

  • Landrum L, Otto-Bliesner BL, Conley A, Lawrence P, Rosenbloom N, Teng H (2013) Last millennium climate and its variability in CCSM4. J Clim 26:1085–1111

    Article  Google Scholar 

  • Langehaug H, Medhaug I, Eldevik T, Otterå OH (2012) Arctic/atlantic exchanges via the subpolar gyre. J Clim 25:2421–2439

    Article  Google Scholar 

  • Lean J, Rottman G, Harder J, Kopp G (2005) SORCE Contributions to new understanding of global change and solar variability. Solar Phys 230:27–53

    Article  Google Scholar 

  • Lehner F, Born A, Raible CC, Stocker TF (2013) Amplified inception of European little ice age by sea ice-ocean-atmosphere feedbacks. J Clim 26:7586–7602

    Article  Google Scholar 

  • Lehner F, Raible CC, Hofer D, Stocker TF (2012) The freshwater balance of polar regions in transient simulations from 1500 to 2100 AD using a comprehensive coupled climate model. Clim Dyn 39:347–363

    Article  Google Scholar 

  • Levermann A, Born A (2007) Bistability of the Atlantic subpolar gyre in a coarse-resolution model. Geophys Res Lett 34:L24605

    Article  Google Scholar 

  • Levitus S, Boyer T (1994) World ocean atlas 1994 volume 4: temperature. Technical report

  • Levitus S, Burgett R, Boyer TP (1994) World ocean atlas 1994 volume 3: salinity. Technical report

  • Lilly JM, Rhines PB (2002) Coherent eddies in the labrador sea observed from a mooring. J Phys Oceanogr 32:585–598

    Article  Google Scholar 

  • Lilly JM, Rhines PB, Visbeck M, Davis R, Lazier JRN, Schott F, Farmer D (1999) Observing deep convection in the labrador sea during winter 1994/95. J Phys Oceanogr 29:2065–2098

    Article  Google Scholar 

  • Locarnini R, Mishonov A, Antonov J, Boyer T, Garcia H, Baranova O, Zweng M, Paver C, Reagan J, Johnson D, Hamilton M, Seidov D (2013) World ocean atlas 2013, volume 1: temperature. Technical report

  • Lozier S (2010) Deconstructing the conveyor belt. Science 328:1507–1511

    Article  Google Scholar 

  • Mauritzen C, Hjøllo SS, Sandø AB (2006) Passive tracers and active dynamics: A model study of hydrography and circulation in the northern North Atlantic. J Geophys Res 111:C08014

    Article  Google Scholar 

  • Mengel M, Levermann A, Schleussner C, Born A (2012) Enhanced Atlantic subpolar gyre variability through baroclinic threshold in a coarse resolution model. Earth Syst Dyn 3:189–197

    Article  Google Scholar 

  • Miller GH, Geirsdóttir A, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, Southon JR, Anderson C, Björnsson H, Thordarson T (2012) Abrupt onset of the little ice age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:L02708

    Article  Google Scholar 

  • Moffa-Sánchez P., Born A, Hall IR, Thornalley DJR, Barker S (2014) Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat Geosci 7:275–278

    Article  Google Scholar 

  • Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang M (2013) The mean climate of the community atmosphere model (CAM4) in forced SST and fully coupled experiments. J Clim 26:5150–5168

    Article  Google Scholar 

  • Nilsen JE, Gao Y, Drange H, Furevik T, Bentsen M (2003) Simulated North Atlantic-Nordic Seas water mass exchanges in an isopycnic coordinate OGCM. Geophys Res Lett 30:1536

    Article  Google Scholar 

  • Prater MD (2002) Eddies in the labrador sea as observed by profiling RAFOS floats and remote sensing. J Phys Oceanogr 32:411–427

    Article  Google Scholar 

  • Robson J, Sutton R, Lohmann K, Smith D, Palmer MD (2012) Causes of the rapid warming of the North Atlantic ocean in the mid 1990s. J Clim 25:4116–4134

    Article  Google Scholar 

  • Sandø AB, Furevik T (2008) Relation between the wind stress curl in the North Atlantic and the Atlantic inflow to the Nordic Seas. J Geophys Res 113:C06028

    Article  Google Scholar 

  • Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45

    Article  Google Scholar 

  • Spall MA (2004) Boundary currents and watermass transformation in marginal seas. J Phys Oceanogr 34:1197–1213

    Article  Google Scholar 

  • Spall MA (2008) Low-frequency interaction between horizontal and overturning gyres in the ocean. Geophys Res Lett 35:L18614

    Article  Google Scholar 

  • Straneo F (2006) Heat and freshwater transport through the central labrador sea. J Phys Oceanogr 36:606–628

    Article  Google Scholar 

  • Thornalley DJR, Elderfield H, McCave IN (2009) Holocene oscillations in temperature and salinity of the surface North Atlantic. Nature 457:711–714

    Article  Google Scholar 

  • Våge K, Pickart RS, Sarafanov A, Knutsen Ø, Mercier H, Lherminier P, van Aken HM, Meincke J, Quadfasel D, Bacon S (2011) The Irminger Gyre: circulation, convection, and interannual variability. Deep-Sea Res I Oceanogr Res Pap 58(5):590–614

    Article  Google Scholar 

  • Vieira LEA, Solanki SK (2010) Evolution of the solar magnetic flux on time scales of years to millenia. Astron Astrophys 509:A100

    Article  Google Scholar 

  • Yashayaev I (2007) Hydrographic changes in the Labrador Sea, 1960–2005. Prog Oceanogr 73:242–276

    Article  Google Scholar 

  • Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A Decadal prediction case study: late 20th century North Atlantic Ocean heat content. J Clim 25:5173–5189

    Article  Google Scholar 

  • Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121

    Article  Google Scholar 

  • Zweng M, Reagan J, Antonov J, Locarnini R, Mishonov A, Boyer T, Garcia H, Baranova O, Johnson D, Seidov D, Biddle M (2013) World ocean atlas 2013, volume 2: salinity. Technical report

Download references

Acknowledgments

We gratefully acknowledge comments by Juliette Mignot and three anonymous reviewers. The simulation with CCSM4 was carried out on CISL compute and storage resources. MICOM simulations were supported by the Norwegian Supercomputer Committee. AB was supported by the European Commission under the Marie Curie Intra-European Fellowship ECLIPS (PIEF-GA-2011-300544). TFS acknowledges the support by the Swiss National Science Foundation through grant 159563. ABS was funded by the Norwegian Research Council through projects EPOCASA and NORTH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Born.

Additional information

Responsible Editor: Dieter Wolf-Gladrow

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Born, A., Stocker, T.F. & Sandø, A.B. Transport of salt and freshwater in the Atlantic Subpolar Gyre. Ocean Dynamics 66, 1051–1064 (2016). https://doi.org/10.1007/s10236-016-0970-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0970-y

Keywords

Navigation