Skip to main content

Advertisement

Log in

An assessment of the mixed layer salinity budget in the tropical Pacific Ocean. Observations and modelling (1990–2009)

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates mechanisms controlling the mixed-layer salinity (MLS) in the tropical Pacific during 1990–2009. We use monthly 1° × 1° gridded observations of salinity, horizontal current and fresh water flux, and a validated ocean general circulation model with no direct MLS relaxation in both its full resolution (0.25° and 5 days) and re-sampled as the observation time/space grid resolution. The present study shows that the mean spatial distribution of MLS results from a subtle balance between surface forcing (E − P, evaporation minus precipitation), horizontal advection (at low and high frequencies) and subsurface forcing (entrainment and mixing), all terms being of analogous importance. Large-scale seasonal MLS variability is found mainly in the Intertropical and South Pacific Convergence Zones due to changes in their meridional location (and related heavy P), in the North Equatorial Counter Currents, and partly in the subsurface forcing. Maximum interannual variability is found in the western Pacific warm pool and in both convergence zones, in relation to El Niño Southern Oscillation (ENSO) events. In the equatorial band, this later variability is due chiefly to the horizontal advection of low salinity waters from the western to the central-eastern basin during El Niño (and vice versa during La Niña), with contrasted evolution for the Eastern and Central Pacific ENSO types. Our findings reveal that all terms of the MLS equation, including high-frequency (<1 month) salinity advection, have to be considered to close the salinity budget, ruling out the use of MLS (or sea surface salinity) only to directly infer the mean, seasonal and/or interannual fresh water fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167. doi:10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2

  • Alory G, Maes C, Delcroix T, Reul N, Illig S (2012) Seasonal dynamics of sea surface salinity off Panama: the far Eastern Pacific Fresh Pool. J Geophys Res Oceans 117. doi:10.1029/2011jc007802

  • Ando K, McPhaden MJ (1997) Variability of surface layer hydrography in the tropical Pacific Ocean. J Geophys Res Oceans 102(C10):23063–23078

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Oceans 112(C11). doi:10.1029/2006jc003798

  • Ballabrera-Poy J, Murtugudde R, Busalacchi AJ (2002) On the potential impact of sea surface salinity observations on ENSO predictions. J Geophys Res Oceans 107(C12). doi:10.1029/2001jc000834

  • Barnier B et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56(5–6):543–567. doi:10.1007/s10236-006-0082-1

    Google Scholar 

  • Barnier B, Dussin R, Molines JM (2011) Scientific Validation Report (ScVR) for V1 Reprocessed Analysis and Reanalysis: GLORYS2V1. MyOcean FP7-SPACE-2007-1 project, report MYO-WP04-ScCV-rea-CNRSRep

  • Bingham FM, Foltz GR, McPhaden MJ (2010) Seasonal cycles of surface layer salinity in the Pacific Ocean. Ocean Science 6(3):775–787. doi:10.5194/os-6-775-2010

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a General Circulation Model with 2 different mixed-layer physics. J Phys Oceanogr 23(7):1363–1388

    Article  Google Scholar 

  • Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32(10):2938–2954

    Article  Google Scholar 

  • Bosc C, Delcroix T (2008) Observed equatorial Rossby waves and ENSO-related warm water volume changes in the equatorial Pacific Ocean. J Geophys Res Oceans 113(C6). doi:10.1029/2007jc004613

  • Bosc C, Delcroix T, Maes C (2009) Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res-Oceans 114(C6). doi:10.1029/2008JC005187

  • Boulanger JP, Menkes C (1999) Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period. Clim Dyn 15(3):205–225. doi:10.1007/s003820050277

    Article  Google Scholar 

  • Cooper NS (1988) The effect of salinity on tropical ocean models. J Phys Oceanogr 18(5):697–707. doi:10.1175/1520-0485(1988)018<0697:teosot>2.0.co;2

    Google Scholar 

  • Cravatte S, Delcroix T, Zhang D, McPhaden M, Leloup J (2009) Observed freshening and warming of the western Pacific Warm Pool. Clim Dyn 33(4):565–589. doi:10.1007/s00382-009-0526-7

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer A, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003

    Article  Google Scholar 

  • Delcroix T (1998) Observed surface oceanic and atmospheric variability in the Tropical Pacific at seasonal and ENSO time scales: a tentative overview. J Geophys Res 103:18611–18633

    Article  Google Scholar 

  • Delcroix T, Henin C (1991) Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J Geophys Res Oceans 96(C12):22135–22150

    Article  Google Scholar 

  • Delcroix T, Picaut J (1998) Zonal displacement of the western equatorial Pacific "fresh pool". J Geophys Res Oceans 103(C1):1087–1098. doi:10.1029/97jc01912

    Article  Google Scholar 

  • Delcroix T, Dewitte B, duPenhoat Y, Masia F, Picaut J (2000) Equatorial waves and warm pool displacements during the 1992–1998 El Niño Southern Oscillation events: observation and modeling. J Geophys Res Oceans 105(C11):26045–26062. doi:10.1029/2000jc900113

    Article  Google Scholar 

  • Delcroix T, McPhaden MJ, Dessier A, Gouriou Y (2005) Time and space scales for sea surface salinity in the tropical oceans. Deep-Sea Res I Oceanogr Res Pap 52(5):787–813. doi:10.1016/j.dsr.2004.11.012

    Article  Google Scholar 

  • Delcroix T, Cravatte S, McPhaden MJ (2007) Decadal variations and trends in tropical Pacific sea surface salinity since 1970. J Geophys Res Oceans 112(C3):C03012. doi:10.1029/2006jc003801

    Article  Google Scholar 

  • Delcroix T, Alory G, Cravatte S, Correge T, McPhaden MJ (2011) A gridded sea surface salinity data set for the tropical Pacific with sample applications (1950–2008). Deep-Sea Res I Oceanogr Res Pap 58(1):38–48. doi:10.1016/j.dsr.2010.11.002

    Article  Google Scholar 

  • Dessier A, Donguy JR (1994) The sea surface salinity in the tropical Atlantic between 10 degS and 30 degN seasonal and interannual variations (1997–1989). Deep-Sea Res I Oceanogr Res Pap 41(1):81–100. doi:10.1016/0967-0637(94)90027-2

    Article  Google Scholar 

  • Dewitte B, Choi J, An SI, Thual S (2012) Vertical structure variability and equatorial waves during central Pacific and eastern Pacific El Nios in a coupled general circulation model. Clim Dyn 38(11–12):2275–2289. doi:10.1007/s00382-011-1215-x

    Article  Google Scholar 

  • Donguy JR, Henin C (1980) Surface conditions in the Eastern Equatorial pacific related to the intertropical convergence zone of winds. Deep Sea Res Oceanogr Res Paper 27(9):693–714. doi:10.1016/0198-0149(80)90023-0

    Article  Google Scholar 

  • Donguy JR, Meyers G (1996) Seasonal variations of sea-surface salinity and temperature in the tropical Indian Ocean. Deep-Sea Res I Oceanogr Res Pap 43(2):117–138. doi:10.1016/0967-0637(96)00009-x

    Article  Google Scholar 

  • Durack PJ, Wijffels SE (2010) Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J Clim 23(16):4342–4362. doi:10.1175/2010jcli3377.1

    Article  Google Scholar 

  • Emery W, Thomson R (1998) Data analysis methods in physical oceanography. Pergamon, Elsevier Science Ltd, New York, p 634

    Google Scholar 

  • Ferry N, Parent L, Garric G, Drevillon M, Desportes C, Bricaut C, Hernandez F (2011) Scientific validation report (ScVR) for V1 reprocessed analysis and reanalysis: GLORYS2V1. MyOcean FP7-SPACE-2007-1 project, report MYO-WP04-ScCV-rea-MERCATOR_V1Rep

  • Gill AE (1982) Atmosphere-ocean dynamics, pp. 1–662. Academic Press, doi:10.1016/S0074-6142(08)60026-1

  • Gouriou Y, Delcroix T (2002) Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976–2000. J Geophys Res Oceans 107(C12):8011. doi:10.1029/2001jc000830

    Article  Google Scholar 

  • Grodsky SA, Carton JA, Bingham FM (2006) Low frequency variation of sea surface salinity in the tropical Atlantic. Geophys Res Lett 33(14). doi:10.1029/2006gl026426

  • Halpern D, Knox RA, Luther DS (1988) Observations of 20-day period meridional current oscillations in the upper ocean along the pacific equator. J Phys Oceanogr 18(11):1514–1534. doi:10.1175/1520-0485(1988)018<1514:OODPMC>2.0.CO;2

    Google Scholar 

  • Johnson ES, Lagerloef GSE, Gunn JT, Bonjean F (2002) Surface salinity advection in the tropical oceans compared with atmospheric freshwater forcing: a trial balance. J Geophys Res Oceans 107(C12). doi:10.1029/2001jc001122

  • Kerr YH, Waldteufel P, Wigneron JP, Martinuzzi JM, Font J, Berger M (2001) Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. IEEE Trans Geosci Remote Sens 39(8):1729–1735. doi:10.1109/36.942551

    Article  Google Scholar 

  • Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):181–217. doi:10.1016/j.pocean.2006.03.009

    Article  Google Scholar 

  • Lagerloef GSE, Mitchum GT, Lukas RB, Niiler PP (1999) Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J Geophys Res Oceans 104(C10):23313–23326. doi:10.1029/1999jc900197

    Article  Google Scholar 

  • Lagerloef G et al (2008) The AQUARIUS/SAC-D mission: designed to meet the salinity remote-sensing challenge. Oceanography 21(1):68–81

    Article  Google Scholar 

  • Lagerloef G, Schmitt R, Schanze J, Kao H-Y (2010) The ocean and the global water cycle. Oceanography 23(4):82–93

    Article  Google Scholar 

  • Lee T, Lagerloef G, Gierach MM, Kao H-Y, Yueh S, Dohan K (2012) Aquarius reveals salinity structure of tropical instability waves. Geophys Res Lett 39(12). doi:10.1029/2012GL052232

  • Legeckis R (1977) Long waves in eastern equatorial Pacific Ocean—view from a geostationary satellite. Science 197(4309):1179–1181. doi:10.1126/science.197.4309.1179

    Article  Google Scholar 

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res Oceans 96:3343–3357

    Article  Google Scholar 

  • Lyman JM, Johnson GC, Kessler WS (2007) Distinct 17-and 33-day tropical instability waves in subsurface observations. J Phys Oceanogr 37(4):855–872. doi:10.1175/jpo3023.1

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine, edited, p. 300, France, Institut Pierre-Simon Laplace (IPSL)

  • Maes C, Ando K, Delcroix T, Kessler WS, McPhaden MJ, Roemmich D (2006) Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys Res Lett 33(6):L06601. doi:10.1029/2005gl024772

    Article  Google Scholar 

  • McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophys Res Lett 26(19):2961–2964. doi:10.1029/1999gl004901

    Article  Google Scholar 

  • Miller JR (1976) Salinity effect in a mixed layer ocean model. J Phys Oceanogr 6(1):29–35. doi:10.1175/1520-0485(1976)006<0029:tseiam>2.0.co;2

    Google Scholar 

  • Penduff T, Juza M, Brodeau L, Smith GC, Barnier B, Molines JM, Treguier AM, Madec G (2010) Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci 6(1):269–284

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274(5292):1486–1489. doi:10.1126/science.274.5292.1486

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Delcroix T, Masia F, Murtugudde R, Vialard J (2001) The oceanic zone of convergence on the eastern edge of the Pacific warm pool: a synthesis of results and implications for El Niño-Southern Oscillation and biogeochemical phenomena. J Geophys Res Oceans 106(C2):2363–2386

    Article  Google Scholar 

  • Qiu B, Scott RB, Chen S (2008) Length scales of eddy generation and nonlinear evolution of the seasonally modulated South Pacific Subtropical Countercurrent. J Phys Oceanogr 38(7):1515–1528. doi:10.1175/2007jpo3856.1

    Article  Google Scholar 

  • Qu T, Gao S, Fukumori I (2011) What governs the North Atlantic salinity maximum in a global GCM? Geophys Res Lett 38. doi:10.1029/2011gl046757

  • Roemmich D, Boebel O, Desaubies Y, Freeland H, King B, LeTraon P.-Y, Molinari R, Owens B, Riser S, Send U, Takeuchi K, Wijffels S (1999) ARGO: the global array of profiling floats. CLIVAR Exchanges 13

  • Singh A, Delcroix T, Cravatte S (2011) Contrasting the flavors of El Niño-Southern Oscillation using sea surface salinity observations. J Geophys Res Oceans 116. doi:10.1029/2010jc006862

  • Sverdrup HU (1943) On the ratio between heat conduction from the sea surface and heat used for evaporation. Ann N Y Acad Sci 44(1):81–88

    Article  Google Scholar 

  • Terray L, Corre L, Cravatte S, Delcroix T, Reverdin G, Ribes A (2012) Near-surface salinity as nature's rain gauge to detect human influence on the tropical water cycle. J Clim 25(3):958–977. doi:10.1175/jcli-d-10-05025.1

    Article  Google Scholar 

  • Vialard J, Delecluse P (1998a) An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the western Pacific fresh pool. J Phys Oceanogr 28(6):1071–1088. doi:10.1175/1520-0485(1998)028<1071:aosftt>2.0.co;2

  • Vialard J, Delecluse P (1998b) An OGCM study for the TOGA decade. Part II: barrier-layer formation and variability. J Phys Oceanogr 28(6):1089–1106. doi:10.1175/1520-0485(1998)028<1089:aosftt>2.0.co;2

  • Vialard J, Menkes C, Boulanger JP, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J Phys Oceanogr 31(7):1649–1675. doi:10.1175/1520-0485(2001)031<1649:amsoom>2.0.co;2

    Google Scholar 

  • Vialard JM, Delecluse P, Menkes C (2002) A modeling study of salinity variability and its effects in the tropical Pacific Ocean during the 1993–1999 period. J Geophys Res Oceans 107(C12). doi:10.1029/2000jc000758

  • Vialard J, Jayakumar A, Gnanaseelan C, Lengaigne M, Sengupta D, Goswami BN (2011) Processes of 30–90 days sea surface temperature variability in the Northern Indian Ocean during boreal summer. Clim Dyn. doi:10.1007/s00382-011-1015-3

  • Vinayachandran PN, Nanjundiah RS (2009) Indian Ocean sea surface salinity variations in a coupled model. Clim Dyn 33(2–3):245–263. doi:10.1007/s00382-008-0511-6

    Article  Google Scholar 

  • Yim BY, Yeh SW, Noh Y, Moon BK, Park YG (2008) Sea surface salinity variability and its relation to El Niño in a CGCM. Asia-Pac J Atmos Sci 44(2):173–189

    Google Scholar 

  • Yu L (2011) A global relationship between the ocean water cycle and near-surface salinity. J Geophys Res Oceans 116. doi:10.1029/2010jc006937

  • Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Rep., 64pp., Woods Hole Oceanographic Institution, Woods Hole Massachusetts

Download references

Acknowledgments

This work is a contribution to the TOSCA/SMOS-Ocean proposal supported by CNES. We benefited from numerous datasets made freely available, and those which are used in this manuscript include the French Sea Surface Salinity Observation Service (http://www.legos.obs-mip.fr/en/observations/sss/), Global Precipitation Climatology Project (http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html), Southern Oscillation Index (http://www.cpc.ncep.noaa.gov/data/indices/soi), Woods Hole Institute OAFlux dataset (ftp://ftp.whoi.edu/pub/science/oaflux/data_v3), the seasonal climatology of mixed layer depth (http://www.locean-ipsl.upmc.fr/∼clement/mld.html), Ocean Surface Current Analyses–Real time (http://www.oscar.noaa.gov/datadisplay/datadownload.htm) datasets and the DRAKKAR Group model simulation (MRD911). Discussion with E. Pachino, F. Durand and E. Kestenare and constructive comments by two anonymous reviewers were appreciated. This work has been done as a PhD research, which grant is paid by the Université de Toulouse 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey E. A. Hasson.

Additional information

Responsible Editor: Aida Alvera-Azcárate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasson, A.E.A., Delcroix, T. & Dussin, R. An assessment of the mixed layer salinity budget in the tropical Pacific Ocean. Observations and modelling (1990–2009). Ocean Dynamics 63, 179–194 (2013). https://doi.org/10.1007/s10236-013-0596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-013-0596-2

Keywords

Navigation