Skip to main content
Log in

Vertical structure variability and equatorial waves during central Pacific and eastern Pacific El Niños in a coupled general circulation model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recent studies report that two types of El Niño events have been observed. One is the cold tongue El Niño or Eastern Pacific El Niño (EP El Niño), which is characterized by relatively large sea surface temperature (SST) anomalies in the eastern Pacific, and the other is the warm pool El Niño (a.k.a. ‘Central Pacific El Niño’ (CP El Niño) or ‘El Niño Modoki’), in which SST anomalies are confined to the central Pacific. Here the vertical structure variability of the periods during EP and CP is investigated based on the GFDL_CM2.1 model in order to explain the difference in equatorial wave dynamics and associated negative feedback mechanisms. It is shown that the mean stratification in the vicinity of the thermocline of the central Pacific is reduced during CP El Niño, which favours the contribution of the gravest baroclinic mode relatively to the higher-order slower baroclinic mode. Energetic Kelvin and first-meridional Rossby wave are evidenced during the CP El Niño with distinctive amplitude and propagating characteristics according to their vertical structure (mostly first and second baroclinic modes). In particular, the first baroclinic mode during CP El Niño is associated to the ocean basin mode and participates to the recharge process during the whole El Niño cycle, whereas the second baroclinic mode is mostly driving the discharge process through the delayed oscillator mechanism. This may explain that the phase transition from warm to neutral/cold conditions during the CP El Niño is delayed and/or disrupted compared to the EP El Niño. Our results have implications for the interpretation of the variability during periods of high CP El Niño occurrence like the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Over this period, 20 CP can be selected based on the definition of Yeh et al. (2009).

References

  • An S-I, Jin F–F (2000) An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys Res Lett 27:1573–1576

    Article  Google Scholar 

  • An S-I, Jin F–F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007

    Article  Google Scholar 

  • Bejarano L, Jin F–F (2008) Coexistence of equatorial coupled modes of ENSO. J Clim 21:3051–3067

    Article  Google Scholar 

  • Blumenthal B, Cane MA (1989) Accounting for parameter uncertainties in model verification: an illustration with tropical sea surface temperature. J Phys Oceanogr 19:815–830

    Article  Google Scholar 

  • Boulanger J-P, Menkes C (1999) Long equatorial wave reflection in the Pacific Ocean during the 1992–1998 TOPEX/POSEIDON period. Clim Dyn 15:205–225

    Article  Google Scholar 

  • Busalacchi AJ, Cane MA (1988) The effect of varying stratification on low-frequency equatorial motions. J Phys Oceanogr 18(6):801–812

    Google Scholar 

  • Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Month Weath Rev 136(8):2999–3017

    Google Scholar 

  • Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavours. Clim Dyn 37:1205–1215

    Article  Google Scholar 

  • Cravatte S, Delcroix T, Zhang D, McPhaden M, Leloup J (2009) Observed freshening and warming of the western Pacific warm pool. Clim Dyn 33:565–589. doi:10.1007/s00382-009-0526-7

    Google Scholar 

  • Delworth TL et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:634–674

    Google Scholar 

  • Dewitte B (2000) Sensitivity of an intermediate coupled ocean-atmosphere model of the tropical Pacific to its oceanic vertical structure. J Clim 13:2363–2388

    Article  Google Scholar 

  • Dewitte B, Reverdin G, Maes C (1999) Vertical structure of an OGCM simulation of the equatorial Pacific Ocean in 1985–1994. J Phys Oceanogr 29:1542–1570

    Article  Google Scholar 

  • Dewitte B, Illig S, Parent L, duPenhoat Y, Gourdeau L, Verron J (2003) Tropical Pacific baroclinic mode contribution and associated long waves for the 1994–1999 period from an assimilation experiment with altimetric data. J Geophys Res 108(C4):3121–3138

    Article  Google Scholar 

  • Dewitte B, Yeh S-W, Moon B-K, Cibot C, Terray L (2007) Rectification of the ENSO variability by interdecadal changes in the equatorial background mean state in a CGCM simulation. J Climate 20(10):2002–2021

    Google Scholar 

  • Dewitte B, Thual S, Yeh S-W, An S-I, Moon B-K, Giese B (2009) Low frequency variability of temperature in the vicinity of the equatorial thermocline in SODA: role of equatorial wave dynamics and ENSO asymmetry. J Climate 22:5783–5795

    Google Scholar 

  • Giese B, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA):1871–2008. J Geophys Res 116:C02024. doi:10.1029/2010JC006695

    Article  Google Scholar 

  • Gnanadesikan A et al (2006) GFDL’s CM2 global coupled climate models, Part II: the baseline ocean simulation. J Clim 19:675–697

    Article  Google Scholar 

  • Griffies SM et al (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F–F, Neelin JD (1993) Modes of interannual tropical ocean-atmosphere interaction—a unified view. Part I: numerical results. J Atmos Sci 50:3477–3503

    Article  Google Scholar 

  • Jin F-F, Kug JS, An S-I, Kang IS (2003) A near-annual coupled ocean-atmosphere mode in the equatorial Pacific Ocean. Geophys Res Lett 30:1080. doi:10.1029/2002GL015983

    Google Scholar 

  • Kang I-S, Kug J-S, An S-I, Jin F–F (2004) A near-annual Pacific Ocean Basin mode. J Clim 17:2478–2488

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kim W, Yeh S-W, Kim J-H, Kug J-S, Kwon M (2011) The unique 2009–2010 El Niño event: a fast phase transition of warm pool El Niño to La Niña. Geophys Res Lett 38:L15809. doi:10.1029/2011GL048521

  • Kug J-S, Kang I-S, An S-I (2003) Symmetric and asymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J Geophys Res 108(NO. C8):3284. doi:10.1029/2002JC001671

  • Kug J-S, Jin F–F, An S-I (2009) Two-types of El Niño events: cold Tongue El Niño and Warm Pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kug J-S, Choi J, An S-I, Jin F–F, Wittenberg A-T (2010) Warm pool and cold tongue El Nino events as simulated by the GFDL2.1 coupled GCM. J Clim 23:1226–1239

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005a) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705

    Google Scholar 

  • Larkin NK, Harrison DE (2005b) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705

    Article  Google Scholar 

  • Lee T, McPhaden M (2010) Increasing intensity of El Nino in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

  • Lighthill MJ (1969) Dynamical response of the Indian Ocean to onset of the southwest monsoon. Phil Trans R Soc A 265:45–92

    Article  Google Scholar 

  • Lin S-J (2004) A “vertically Lagrangian” finite-volume dynamical core for global models. Mon Wea Rev 132:2293–2307

    Article  Google Scholar 

  • McPhaden MJ (2004) Evolution of the 2002–03 El Niño. Bull Am Meteor Soc 85:677–695

    Article  Google Scholar 

  • McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The tropical ocean-global atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103:14169–14240

    Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Article  Google Scholar 

  • Neelin JD, Jin F–F (1993) Modes of interannual tropical ocean–atmosphere interaction—a unified view. Part II: analytical results in the weak-coupling limit. J Atmos Sci 50:3504–3522

    Article  Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin F–F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophy Res Oceans 103:14261–14290

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the Zonal displacements of the pacific warm pool: implications for ENSO. Science 274:1486–1489

    Article  Google Scholar 

  • Schopf P-S, Suarez M-J (1988) Vacillations in a coupled ocean-atmosphere model. J Atmos Sci 45:549–566

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1989) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi:10.1029/2011GL047364

  • Weng H, Ashok K, Behera S, Rao S, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Clim Dyn 29:113–129

    Article  Google Scholar 

  • Wittenberg A, Rosati TA, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722

    Article  Google Scholar 

  • Yeh S-W, Kug S-J, Dewitte B, Kwon M-H, Kirtman BP, Jin F–F (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2010a) Three evolution patterns of Central-Pacific El Niño. Geophys Res Lett 37:L08706. doi:10.1029/2010GL042810

  • Yu J-Y, Kim ST (2010b) Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett 37. doi:10.1029/2010GL044082

  • Yu J-Y, Kim ST (2011) Relationships between extratropical sea level pressure variations and the Central Pacific and Eastern Pacific types of ENSO. J Clim 24:708–720

    Article  Google Scholar 

  • Yu J-Y, Kao H-Y, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884

    Article  Google Scholar 

  • Yu J-Y, Kao H-Y, Lee T, Kim S (2011) Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theoretical Appl Climatol 103:337–344

    Article  Google Scholar 

  • Zelle H, Appeldoorn G, Burgers G, van Oldenborgh GJ (2004) The relationship between sea surface temperature and thermocline depth in the eastern equatorial Pacific. J Clim 34:643–655

    Google Scholar 

Download references

Acknowledgments

S.-I. An was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0015208). Sulian Thual benefited from support of the CNRS (Centre National de la Recherche Scientifique) through a STAR (Science and Technology Amicable Research) program (No. 25848VL). The two anonymous reviewers are thanked for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Dewitte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewitte, B., Choi, J., An, SI. et al. Vertical structure variability and equatorial waves during central Pacific and eastern Pacific El Niños in a coupled general circulation model. Clim Dyn 38, 2275–2289 (2012). https://doi.org/10.1007/s00382-011-1215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1215-x

Keywords

Navigation