Skip to main content
Log in

Complexity Classes and Completeness in Algebraic Geometry

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We study the computational complexity of sequences of projective varieties. We define analogues of the complexity classes P and NP for these and prove the NP-completeness of a sequence called the universal circuit resultant. This is the first family of compact spaces shown to be NP-complete in a geometric setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu, S.: A complex analogue of Toda’s theorem. Foundations of Computational Mathematics 12(3), 327–362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basu, S.: A complexity theory of constructible functions and sheaves. Foundations of Computational Mathematics 15(1), 199–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basu, S., Zell, T.: Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s theorem. Foundations of Computational Mathematics 10(4), 429–454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer Science & Business Media (1998)

  5. Bürgisser, P.: Completeness and reduction in algebraic complexity theory, vol. 7. Springer Science & Business Media (2013)

  6. Bürgisser, P., Clausen, M., Shokrollahi, A.: Algebraic complexity theory, vol. 315. Springer Science & Business Media (2013)

  7. Durand, A., Mahajan, M., Malod, G., de Rugy-Altherre, N., Saurabh, N.: Homomorphism polynomials complete for VP. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

  8. Gelfand, I.M., Kapranov, M., Zelevinsky, A.: Discriminants, resultants, and multidimensional determinants. Springer Science & Business Media (2008)

  9. Kayal, N.: Affine projections of polynomials. In: Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pp. 643–662. ACM (2012)

  10. Mahajan, M., Saurabh, N.: Some complete and intermediate polynomials in algebraic complexity theory. In: International Computer Science Symposium in Russia, pp. 251–265. Springer (2016)

  11. Mulmuley, K.D.: On P vs. NP and geometric complexity theory: Dedicated to Sri Ramakrishna. Journal of the ACM (JACM) 58(2), 5 (2011)

  12. Mulmuley, K.D., Sohoni, M.: Geometric complexity theory i: An approach to the P vs. NP and related problems. SIAM Journal on Computing 31(2), 496–526 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Raz, R.: Elusive functions and lower bounds for arithmetic circuits. In: Proceedings of the fortieth annual ACM symposium on Theory of computing, pp. 711–720. ACM (2008)

  14. Shub, M.: Some problems for this century. Talk presented at FOCM14, December 11, 2014, Montevideo (2014). URL https://www.fing.edu.uy/eventos/focm2014/slides_files/FoCM-plenary-m-11-21_mikeshub.pdf

  15. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the eleventh annual ACM symposium on Theory of computing, pp. 249–261. ACM (1979)

  16. Valiant, L.G.: The complexity of computing the permanent. Theoretical computer science 8(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Vladimir Baranovsky and Saugata Basu for useful discussions on the subject of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Umut Isik.

Additional information

Communicated by Peter Bürgisser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umut Isik, M. Complexity Classes and Completeness in Algebraic Geometry. Found Comput Math 19, 245–258 (2019). https://doi.org/10.1007/s10208-018-9383-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-018-9383-2

Keywords

Mathematics Subject Classification

Navigation