Skip to main content
Log in

A Complexity Theory of Constructible Functions and Sheaves

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we introduce constructible analogs of the discrete complexity classes \(\mathbf {VP}\) and \(\mathbf {VNP}\) of sequences of functions. The functions in the new definitions are constructible functions on \(\mathbb {R}^n\) or \(\mathbb {C}^n\). We define a class of sequences of constructible functions that play a role analogous to that of \(\mathbf {VP}\) in the more classical theory. The class analogous to \(\mathbf {VNP}\) is defined using Euler integration. We discuss several examples, develop a theory of completeness, and pose a conjecture analogous to the \(\mathbf {VP}\) versus \(\mathbf {VNP}\) conjecture in the classical case. In the second part of the paper we extend the notions of complexity classes to sequences of constructible sheaves over \(\mathbb {R}^n\) (or its one point compactification). We introduce a class of sequences of simple constructible sheaves, that could be seen as the sheaf-theoretic analog of the Blum–Shub–Smale class \(\mathbf {P}_\mathbb {R}\). We also define a hierarchy of complexity classes of sheaves mirroring the polynomial hierarchy, \(\mathbf {PH}_\mathbb {R}\), in the B–S–S theory. We prove a singly exponential upper bound on the topological complexity of the sheaves in this hierarchy mirroring a similar result in the B–S–S setting. We obtain as a result an algorithm with singly exponential complexity for a sheaf-theoretic variant of the real quantifier elimination problem. We pose the natural sheaf-theoretic analogs of the classical \(\mathbf {P}\) versus \(\mathbf {NP}\) question, and also discuss a connection with Toda’s theorem from discrete complexity theory in the context of constructible sheaves. We also discuss possible generalizations of the questions in complexity theory related to separation of complexity classes to more general categories via sequences of adjoint pairs of functors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Théorie des topos et cohomologie étale des schémas. Tome 3. Lecture Notes in Mathematics, Vol. 305. Springer-Verlag, Berlin, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat.

  2. D. Abramovich, K. Karu, K. Matsuki, and J. Włodarczyk. Torification and factorization of birational maps. J. Amer. Math. Soc., 15(3):531–572 (electronic), 2002.

  3. A. I. Barvinok. Feasibility testing for systems of real quadratic equations. Discrete Comput. Geom., 10(1):1–13, 1993.

  4. Y. Baryshnikov and R. Ghrist. Euler integration over definable functions. Proc. Natl. Acad. Sci. USA, 107(21):9525–9530, 2010.

  5. S. Basu. On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets. Discrete Comput. Geom., 22(1):1–18, 1999.

  6. S. Basu. Computing the first few Betti numbers of semi-algebraic sets in single exponential time. J. Symbolic Comput., 41(10):1125–1154, 2006.

  7. S. Basu. Efficient algorithm for computing the Euler-Poincaré characteristic of a semi-algebraic set defined by few quadratic inequalities. Comput. Complexity, 15(3):236–251, 2006.

  8. S. Basu. Computing the top few Betti numbers of semi-algebraic sets defined by quadratic inequalities in polynomial time. Found. Comput. Math., 8(1):45–80, 2008.

  9. S. Basu. A complex analogue of Toda’s theorem. Found. Comput. Math., 12(3):327–362, 2012.

  10. S. Basu and M. Kettner. Bounding the number of stable homotopy types of a parametrized family of semi-algebraic sets defined by quadratic inequalities. Proc. London Math. Soc. (3), 98:298–324, 2009.

  11. S. Basu, D. V. Pasechnik, and M.-F. Roy. Computing the Betti numbers of semi-algebraic sets defined by partly quadratic sytems of polynomials. J. Algebra, 321(8):2206–2229, 2009.

  12. S. Basu, R. Pollack, and M.-F. Roy. On the number of cells defined by a family of polynomials on a variety. Mathematika, 43(1):120–126, 1996.

  13. S. Basu, R. Pollack, and M.-F. Roy. Computing the Euler-Poincaré characteristics of sign conditions. Comput. Complexity, 14(1):53–71, 2005.

  14. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry, volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2006 (second edition).

  15. S. Basu, R. Pollack, and M.-F. Roy. Computing the first Betti number of a semi-algebraic set. Found. Comput. Math., 8(1):97–136, 2008.

  16. S. Basu and N. Vorobjov. On the number of homotopy types of fibres of a definable map. J. Lond. Math. Soc. (2), 76(3):757–776, 2007.

  17. S. Basu and T. Zell. Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s theorem. Found. Comput. Math., 10(4):429–454, 2010.

  18. E. Bierstone, D. Grigoriev, P. Milman, and J. Wlodarczyk. Effective Hironaka resolution and its Complexity (with appendix on applications in positive characteristic). ArXiv e-prints, June 2012.

  19. F. Bittner. The universal Euler characteristic for varieties of characteristic zero. Compos. Math., 140(4):1011–1032, 2004.

  20. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp.

  21. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. (N.S.), 21(1):1–46, 1989.

  22. J. Bochnak, M. Coste, and M.-F. Roy. Géométrie algébrique réelle (Second edition in english: Real Algebraic Geometry), volume 12 (36) of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas] . Springer-Verlag, Berlin, 1987 (1998).

  23. A. Borel et al. Intersection cohomology. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, 2008. Notes on the seminar held at the University of Bern, Bern, 1983, Reprint of the 1984 edition.

  24. P. Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2000.

  25. P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig.

  26. P. Bürgisser and F. Cucker. Variations by complexity theorists on three themes of Euler, Bézout, Betti, and Poincaré. In Complexity of computations and proofs, volume 13 of Quad. Mat., pages 73–151. Dept. Math., Seconda Univ. Napoli, Caserta, 2004.

  27. P. Bürgisser and F. Cucker. Counting complexity classes for numeric computations. II. Algebraic and semialgebraic sets. J. Complexity, 22(2):147–191, 2006.

  28. P. Bürgisser, J. M. Landsberg, L. Manivel, and J. Weyman. An overview of mathematical issues arising in the geometric complexity theory approach to VP \(\ne \) VNP. SIAM J. Comput., 40(4):1179–1209, 2011.

  29. R. Cluckers and M. Edmundo. Integration of positive constructible functions against Euler characteristic and dimension. J. Pure Appl. Algebra, 208(2):691–698, 2007.

  30. R. Cluckers and F. Loeser. Fonctions constructibles et intégration motivique. I. C. R. Math. Acad. Sci. Paris, 339(6):411–416, 2004.

  31. P. Deligne. Équations différentielles à points singuliers réguliers. Lecture Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin, 1970.

  32. P. Deligne. Théorie de Hodge. II.Inst. Hautes Études Sci. Publ. Math., (40):5–57, 1971.

  33. P. Deligne. Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math., (44):5–77, 1974.

  34. P. Deligne. Cohomologie étale. Lecture Notes in Mathematics, Vol. 569. Springer-Verlag, Berlin, 1977. Séminaire de Géométrie Algébrique du Bois-Marie SGA 41øer2, Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier.

  35. A. Dimca. Singularities and topology of hypersurfaces. Universitext. Springer-Verlag, New York, 1992.

  36. A. Dimca. Sheaves in topology. Universitext. Springer-Verlag, Berlin, 2004.

  37. A. Gabrielov and N. Vorobjov. Approximation of definable sets by compact families, and upper bounds on homotopy and homology. J. Lond. Math. Soc. (2), 80(1):35–54, 2009.

  38. S. I. Gelfand and Y. I. Manin. Methods of homological algebra. Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003.

  39. R. Godement. Topologie algébrique et théorie des faisceaux. Actualités Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13. Hermann, Paris, 1958.

  40. D. Grigoriev. Complexity of deciding Tarski algebra. J. Symbolic Comput., 5(1–2):65–108, 1988.

  41. D. Grigoriev. Constructing double-exponential number of vectors of multiplicities of solutions of polynomial systems. In Symbolic computation: solving equations in algebra, geometry, and engineering (South Hadley, MA, 2000), volume 286 of Contemp. Math., pages 115–120. Amer. Math. Soc., Providence, RI, 2001.

  42. D. Grigoriev and N. Vorobjov. Bounds on numbers of vectors of multiplicities for polynomials which are easy to compute. In Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews), pages 137–145 (electronic). ACM, New York, 2000.

  43. R. Hardt. Semi-algebraic local-triviality in semi-algebraic mappings. Amer. J. Math., 102(2):291–302, 1980.

  44. B. Iversen. Cohomology of sheaves. Universitext. Springer-Verlag, Berlin, 1986.

  45. M. Kashiwara and P. Schapira. Sheaves on manifolds, volume 292 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel.

  46. S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Universitext. Springer-Verlag, New York, 1994. A first introduction to topos theory, Corrected reprint of the 1992 edition.

  47. C. McCrory and A. Parusiński. Algebraically constructible functions: real algebra and topology. In Arc spaces and additive invariants in real algebraic and analytic geometry, volume 24 of Panor. Synthèses, pages 69–85. Soc. Math. France, Paris, 2007.

  48. J. Milnor. On the Betti numbers of real varieties. Proc. Amer. Math. Soc., 15:275–280, 1964.

  49. J. L. Montaña, J. E. Morais, and L. M. Pardo. Lower bounds for arithmetic networks. II. Sum of Betti numbers. Appl. Algebra Engrg. Comm. Comput., 7(1):41–51, 1996.

  50. K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica, 7(1):101–104, 1987.

  51. K. D. Mulmuley and M. Sohoni. Geometric complexity theory. I. An approach to the P vs. NP and related problems. SIAM J. Comput., 31(2):496–526 (electronic), 2001.

  52. C. Peters. Motivic Aspects of Hodge Theory. Tata Institute of Fundamental Research lectures on mathematics. Narosa Publishing House, 2010.

  53. I. G. Petrovskiĭ and O. A. Oleĭnik. On the topology of real algebraic surfaces. Izvestiya Akad. Nauk SSSR. Ser. Mat., 13:389–402, 1949.

  54. F. Pham. Singularités des systèmes différentiels de Gauss-Manin, volume 2 of Progress in Mathematics. Birkhäuser Boston, Mass., 1979. With contributions by Lo Kam Chan, Philippe Maisonobe and Jean-Étienne Rombaldi.

  55. J. Renegar. On the computational complexity and geometry of the first-order theory of the reals. I-III. J. Symbolic Comput., 13(3):255–352, 1992.

  56. P. Schapira. Cycles lagrangiens, fonctions constructibles et applications. In Séminaire sur les Équations aux Dérivées Partielles, 1988–1989, pages Exp. No. XI, 9. École Polytech., Palaiseau, 1989.

  57. P. Schapira. Operations on constructible functions. J. Pure Appl. Algebra, 72(1):83–93, 1991.

  58. P. Schapira. Constructible functions, Lagrangian cycles and computational geometry. In The Gel’fand Mathematical Seminars, 1990–1992, pages 189–202. Birkhäuser Boston, Boston, MA, 1993.

  59. P. Schapira. Tomography of constructible functions. In Applied algebra, algebraic algorithms and error-correcting codes (Paris, 1995), volume 948 of Lecture Notes in Comput. Sci., pages 427–435. Springer, Berlin, 1995.

  60. J. Schürmann. Topology of singular spaces and constructible sheaves, volume 63 of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)]. Birkhäuser Verlag, Basel, 2003.

  61. L. Stockmeyer. The polynomial-time hierarchy. Theoret. Comput. Sci., 3(1):1–22 (1977), 1976.

  62. R. Thom. Sur l’homologie des variétés algébriques réelles. In Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pages 255–265. Princeton Univ. Press, Princeton, N.J., 1965.

  63. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877, 1991.

  64. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–201, 1979.

  65. L. G. Valiant. Reducibility by algebraic projections. Enseign. Math. (2), 28(3–4):253–268, 1982.

  66. L. G. Valiant. An algebraic approach to computational complexity. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), pages 1637–1643, Warsaw, 1984. PWN.

  67. L. van den Dries. Tame topology and o-minimal structures, volume 248 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.

  68. O. Y. Viro. Some integral calculus based on Euler characteristic. In Topology and geometry–Rohlin Seminar, volume 1346 of Lecture Notes in Math., pages 127–138. Springer, Berlin, 1988.

  69. A. C.-C. Yao. Decision tree complexity and Betti numbers. J. Comput. System Sci., 55(1, part 1):36–43, 1997. 26th Annual ACM Symposium on the Theory of Computing (STOC ’94) (Montreal, PQ, 1994).

Download references

Acknowledgments

The author would like to thank the anonymous referees for a very careful reading of a previous version of this paper, and for many comments and suggestions that helped to improve the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saugata Basu.

Additional information

Communicated by Teresa Krick and James Renegar.

Dedicated to Mike Shub on his 70-th birthday.

The author was supported in part by NSF grants CCF-0915954, CCF-1319080 and DMS-1161629 while working on this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S. A Complexity Theory of Constructible Functions and Sheaves. Found Comput Math 15, 199–279 (2015). https://doi.org/10.1007/s10208-014-9222-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9222-z

Keywords

Mathematics Subject Classification

Navigation