Skip to main content
Log in

A Complex Analogue of Toda’s Theorem

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Toda (SIAM J. Comput. 20(5):865–877, 1991) proved in 1989 that the (discrete) polynomial time hierarchy, PH, is contained in the class P #P, namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class #P. This result, which illustrates the power of counting, is considered to be a seminal result in computational complexity theory. An analogous result (with a compactness hypothesis) in the complexity theory over the reals (in the sense of Blum–Shub–Smale real machines (Blum et al. in Bull. Am. Math. Soc. 21(1):1–46, 1989) was proved in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010). Unlike Toda’s proof in the discrete case, which relied on sophisticated combinatorial arguments, the proof in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010) is topological in nature; the properties of the topological join are used in a fundamental way. However, the constructions used in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010) were semi-algebraic—they used real inequalities in an essential way and as such do not extend to the complex case. In this paper, we extend the techniques developed in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010) to the complex projective case. A key role is played by the complex join of quasi-projective complex varieties. As a consequence, we obtain a complex analogue of Toda’s theorem. The results of this paper, combined with those in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010), illustrate the central role of the Poincaré polynomial in algorithmic algebraic geometry, as well as in computational complexity theory over the complex and real numbers: the ability to compute it efficiently enables one to decide in polynomial time all languages in the (compact) polynomial hierarchy over the appropriate field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd edn. Algorithms and Computation in Mathematics, vol. 10 (Springer, Berlin, 2006). MR 1998147 (2004g:14064).

    MATH  Google Scholar 

  2. S. Basu, T. Zell, Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s theorem, Found. Comput. Math. 10(4), 429–454 (2010). MR 2657948.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Beltrán, L.M. Pardo, Smale’s 17th problem: average polynomial time to compute affine and projective solutions, J. Am. Math. Soc. 22(2), 363–385 (2009). MR 2476778 (2009m:90147).

    Article  MATH  Google Scholar 

  4. L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Am. Math. Soc. 21(1), 1–46 (1989). MR 90a:68022.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation (Springer, New York, 1998). With a foreword by Richard M. Karp. MR 99a:68070.

    Google Scholar 

  6. P. Bürgisser, F. Cucker, Variations by complexity theorists on three themes of Euler, Bézout, Betti, and Poincaré, in Complexity of Computations and Proofs, ed. by J. Krajicek, Quad. Mat., Dept. Math., vol. 13 (Seconda Univ. Napoli, Caserta, 2004), pp. 73–151. MR 2131406 (2006c:68053).

    Google Scholar 

  7. P. Bürgisser, F. Cucker, Counting complexity classes for numeric computations. II. Algebraic and semialgebraic sets, J. Complex. 22(2), 147–191 (2006). MR 2200367 (2007b:68059).

    Article  MATH  Google Scholar 

  8. P. Bürgisser, F. Cucker, On a problem posed by Steve Smale, Ann. Math. 174(3), 1785–1836 (2011).

    Article  MATH  Google Scholar 

  9. P. Bürgisser, F. Cucker, M. Lotz, Counting complexity classes for numeric computations. III. Complex projective sets, Found. Comput. Math. 5(4), 351–387 (2005). MR 2189543 (2006h:68039).

    Article  MathSciNet  MATH  Google Scholar 

  10. J.H. Davenport, J. Heintz, Real quantifier elimination is doubly exponential, J. Symb. Comput. 5(1/2), 29–35 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Deligne, La conjecture de Weil. I, Publ. Math. IHÉS 43, 273–307 (1974). MR 0340258 (49 #5013).

    MathSciNet  Google Scholar 

  12. P. Deligne, La conjecture de Weil. II, Publ. Math. IHÉS 52, 137–252 (1980). MR 601520 (83c:14017)

    MathSciNet  MATH  Google Scholar 

  13. B. Dwork, On the rationality of the zeta function of an algebraic variety, Am. J. Math. 82(3), 631–648 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Gabrielov, N. Vorobjov, T. Zell, Betti numbers of semialgebraic and sub-Pfaffian sets, J. Lond. Math. Soc. 69(1), 27–43 (2004). MR 2025325 (2004k:14105).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Godement, Topologie algébrique et théorie des faisceaux, in Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg, vol. 13 (Hermann, Paris, 1958). MR 0102797 (21 #1583).

    Google Scholar 

  16. N.M. Katz, Sums of Betti numbers in arbitrary characteristic, Finite Fields Appl. 7(1), 29–44 (2001). Dedicated to Professor Chao Ko on the occasion of his 90th birthday. MR 1803934 (2002d:14028).

    Article  MathSciNet  MATH  Google Scholar 

  17. H.B. Lawson Jr., Algebraic cycles and homotopy theory, Ann. Math. 129(2), 253–291 (1989). MR 986794 (90h:14008).

    Article  MATH  Google Scholar 

  18. J. Matoušek, Using the Borsuk–Ulam theorem, in Universitext. Lectures on Topological Methods in Combinatorics and Geometry (Springer, Berlin, 2003). Written in cooperation with Anders Björner and Günter M. Ziegler. MR 1988723 (2004i:55001).

    Google Scholar 

  19. J. McCleary, A User’s Guide to Spectral Sequences, 2nd edn. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2001).

    MATH  Google Scholar 

  20. K. Meer, Counting problems over the reals, Theor. Comput. Sci. 242(1–2), 41–58 (2000). MR 1769145 (2002g:68041).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, 1994).

    MATH  Google Scholar 

  22. P. Scheiblechner, On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety, J. Complex. 23(3), 359–379 (2007). MR 2330991 (2009d:14020).

    Article  MathSciNet  MATH  Google Scholar 

  23. U. Schöning, Probabilistic complexity classes and lowness, J. Comput. Syst. Sci. 39(1), 84–100 (1989). MR 1013721 (91b:68041a).

    Article  MATH  Google Scholar 

  24. M. Shub, S. Smale, Complexity of Bézout’s theorem. I. Geometric aspects, J. Am. Math. Soc. 6(2), 459–501 (1993). MR 1175980 (93k:65045).

    MathSciNet  MATH  Google Scholar 

  25. M. Shub, S. Smale, On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “\(\mathrm{NP}\not=\mathrm{P}\)?”, Duke Math. J. 81(1), 47–54 (1995). (1996), A celebration of John F. Nash, Jr. MR 1381969 (97h:03067).

    Article  MathSciNet  MATH  Google Scholar 

  26. E.H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966). MR 0210112 (35 #1007).

    MATH  Google Scholar 

  27. L. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3(1), 1–22 (1976). (1977). MR 0438810 (55 #11716).

    Article  MathSciNet  Google Scholar 

  28. S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20(5), 865–877 (1991). MR 1115655 (93a:68047).

    Article  MathSciNet  MATH  Google Scholar 

  29. L.G. Valiant, V.V. Vazirani, NP is as easy as detecting unique solutions, Theor. Comput. Sci. 47(1), 85–93 (1986). MR 871466 (88i:68021).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Weil, Number of solutions of equations over finite fields, Bull. Am. Math. Soc. 55, 497–508 (1949).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saugata Basu.

Additional information

Communicated by Peter Bürgisser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S. A Complex Analogue of Toda’s Theorem. Found Comput Math 12, 327–362 (2012). https://doi.org/10.1007/s10208-011-9105-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9105-5

Keywords

Mathematics Subject Classification (2000)

Navigation