Skip to main content

Advertisement

Log in

Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson’s disease, Alzheimer’s disease and autism spectrum disorder

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

The nematode Caenorhabditis elegans has a very well-defined and genetically tractable nervous system which offers an effective model to explore basic mechanistic pathways that might be underpin complex human neurological diseases. Here, the role C. elegans is playing in understanding two neurodegenerative conditions, Parkinson’s and Alzheimer’s disease (AD), and a complex neurological condition, autism, is used as an exemplar of the utility of this model system. C. elegans is an imperfect model of Parkinson’s disease because it lacks orthologues of the human disease-related genes PARK1 and LRRK2 which are linked to the autosomal dominant form of this disease. Despite this fact, the nematode is a good model because it allows transgenic expression of these human genes and the study of the impact on dopaminergic neurons in several genetic backgrounds and environmental conditions. For AD, C. elegans has orthologues of the amyloid precursor protein and both human presenilins, PS1 and PS2. In addition, many of the neurotoxic properties linked with Aβ amyloid and tau peptides can be studied in the nematode. Autism spectrum disorder is a complex neurodevelopmental disorder characterised by impairments in human social interaction, difficulties in communication, and restrictive and repetitive behaviours. Establishing C. elegans as a model for this complex behavioural disorder is difficult; however, abnormalities in neuronal synaptic communication are implicated in the aetiology of the disorder. Numerous studies have associated autism with mutations in several genes involved in excitatory and inhibitory synapses in the mammalian brain, including neuroligin, neurexin and shank, for which there are C. elegans orthologues. Thus, several molecular pathways and behavioural phenotypes in C. elegans have been related to autism. In general, the nematode offers a series of advantages that combined with knowledge from other animal models and human research, provides a powerful complementary experimental approach for understanding the molecular mechanisms and underlying aetiology of complex neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9(5):341–355

    Article  PubMed  CAS  Google Scholar 

  • Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324

    Article  PubMed  CAS  Google Scholar 

  • Antoshechkin I, Sternberg PW (2007) The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev 8:518–532

    Article  CAS  Google Scholar 

  • Asikainen S, Vartiainen S, Lakso M, Nass R, Wong G (2005) Selective sensitivity of Caenorhabditis elegans neurons to RNA interference. Neuroreport 16(18):1995–1999

    Article  PubMed  CAS  Google Scholar 

  • Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25(1):63–77

    Article  PubMed  CAS  Google Scholar 

  • Baluchnejadmojarad T, Roghani M, Nadoushan MR, Bagheri M (2009) Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model. Phytother Res 23(1):132–135

    Article  PubMed  CAS  Google Scholar 

  • Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282(5396):2028–2033

    Article  PubMed  CAS  Google Scholar 

  • Bartels T, Choi JG, Selkoe DJ (2011) Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110

    Article  PubMed  CAS  Google Scholar 

  • Baudouin S, Scheiffele P (2010) SnapShot: neuroligin–neurexin complexes. Cell 141(5):908

    Article  PubMed  Google Scholar 

  • Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U et al (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42(6):489–491

    Article  PubMed  CAS  Google Scholar 

  • Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68(2):270–281

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Reinhard J, Oakeshott J, Russell R, Srinivasan MV, Claudianos C (2010) Sensory regulation of neuroligins and neurexin I in the honeybee brain. PLoS One 5(2):e9133

    Article  PubMed  CAS  Google Scholar 

  • Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259

    Article  PubMed  CAS  Google Scholar 

  • Bourgeron T (2009) A synaptic trek to autism. Curr Opin Neurobiol 19(2):231–234

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    PubMed  CAS  Google Scholar 

  • Brown RG, Marsden CD (1990) Cognitive function in Parkinson’s disease: from description to theory. Trends Neurosci 13(1):21–29

    Article  PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80(14):4546–4550

    Article  PubMed  CAS  Google Scholar 

  • Calahorro F (2011) Genetics of autism: Caenorhabditis elegans as an experimental tool in the study of the neuronal synaptic function. Ph. D. thesis, Universidad de Córdoba, Córdoba

  • Calahorro F, Alejandre E, Ruiz-Rubio M (2009) Osmotic avoidance in Caenorhabditis elegans: synaptic function of two genes, orthologues of human NRXN1 and NLGN1, as candidates for autism. J Vis Exp 34:e-1616. doi: 10.3791/1616. http://www.jove.com/Details.stp?ID=1616

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96

    Article  PubMed  CAS  Google Scholar 

  • Calixto A, Chelur D, Topalidou I, Chen X, Chalfie M (2010) Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods 7(7):554–559

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Gelwix CC, Caldwell KA, Caldwell GA (2005) Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 25(15):3801–3812

    Article  PubMed  CAS  Google Scholar 

  • Centre for Disease Control and Prevention (2009) Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006. MMWR Surveill Summ 58(10):1–20

    Google Scholar 

  • Chalfie M, White J (1986) The nervous system. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 337–391

    Google Scholar 

  • Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169

    Article  PubMed  CAS  Google Scholar 

  • Conforti L, Adalbert R, Coleman MP (2007) Neuronal death: where does the end begin? Trends Neurosci 30(4):159–166

    Article  PubMed  CAS  Google Scholar 

  • Cuervo AM, Wong ES, Martinez-Vicente M (2010) Protein degradation, aggregation, and misfolding. Mov Disord 25(Suppl 1):S49–S54

    Article  PubMed  Google Scholar 

  • Dauer W, Ho CC (2010) The biology and pathology of the familial Parkinson’s disease protein LRRK2. Mov Disord 25(Suppl 1):S40–S43

    Article  PubMed  Google Scholar 

  • Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66(5):646–661

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113(Pt 11):1857–1870

    PubMed  Google Scholar 

  • Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E et al (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6(7):708–716

    Article  PubMed  CAS  Google Scholar 

  • DelleDonne A, Klos KJ, Fujishiro H, Ahmed Z, Parisi JE, Josephs KA et al (2008) Incidental Lewy body disease and preclinical Parkinson disease. Arch Neurol 65(8):1074–1080

    Article  PubMed  Google Scholar 

  • Diomede L, Cassata G, Fiordaliso F, Salio M, Ami D, Natalello A et al (2010) Tetracycline and its analogues protect Caenorhabditis elegans from beta amyloid-induced toxicity by targeting oligomers. Neurobiol Dis 40(2):424–431

    Article  PubMed  CAS  Google Scholar 

  • Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y (2010) Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J Alzheimers Dis 19(2):681–690

    PubMed  CAS  Google Scholar 

  • Dostal V, Roberts CM, Link CD (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of beta-amyloid peptide toxicity. Genetics 186(3):857–866

    Article  PubMed  CAS  Google Scholar 

  • Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27

    Article  PubMed  CAS  Google Scholar 

  • Eapen V (2011) Genetic basis of autism: is there a way forward? Curr Opin Psychiatry 24(3):226–236

    Article  PubMed  Google Scholar 

  • Fay DS, Fluet A, Johnson CJ, Link CD (1998) In vivo aggregation of beta-amyloid peptide variants. J Neurochem 71(4):1616–1625

    Article  PubMed  CAS  Google Scholar 

  • Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD, Shen K et al (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57(3):353–363

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  PubMed  CAS  Google Scholar 

  • Folstein S, Rutter M (1977) Genetic influences and infantile autism. Nature 265(5596):726–728

    Article  PubMed  CAS  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55(3):259–272

    Article  PubMed  CAS  Google Scholar 

  • Garber K (2007) Neuroscience. Autism’s cause may reside in abnormalities at the synapse. Science 317(5835):190–191

    Article  PubMed  CAS  Google Scholar 

  • Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119(7):1013–1026

    Article  PubMed  CAS  Google Scholar 

  • Guthrie CR, Schellenberg GD, Kraemer BC (2009) SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Hum Mol Genet 18(10):1825–1838

    Article  PubMed  CAS  Google Scholar 

  • Haklai-Topper L, Soutschek J, Sabanay H, Scheel J, Hobert O, Peles E (2011) The neurexin superfamily of Caenorhabditis elegans. Gene Expr Patterns 11(1–2):144–150

    Article  PubMed  CAS  Google Scholar 

  • Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry (advanced online publication)

  • Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci USA 105(2):728–733

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Kitada T, Matsumine H, Asakawa S, Yamamura Y, Yoshino H et al (1998) Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol 44(6):935–941

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock EM, Sulston JE, Thomson JN (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220(4603):1277–1279

    Article  PubMed  CAS  Google Scholar 

  • Hunter JW, Mullen GP, McManus JR, Heatherly JM, Duke A, Rand JB (2010) Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 3(5–6):366–376

    Article  PubMed  CAS  Google Scholar 

  • Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C et al (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81(3):435–443

    Article  PubMed  CAS  Google Scholar 

  • Jadiya P, Chatterjee M, Sammi SR, Kaur S, Palit G, Nazir A (2011) Sir-2.1 modulates ‘calorie-restriction-mediated’ prevention of neurodegeneration in Caenorhabditis elegans: implications for Parkinson’s disease. Biochem Biophys Res Commun 413(2):306–310

    Article  PubMed  CAS  Google Scholar 

  • Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29

    Article  PubMed  CAS  Google Scholar 

  • Jee C, Lee J, Lee JI, Lee WH, Park BJ, Yu JR et al (2004) SHN-1, a Shank homologue in C. elegans, affects defecation rhythm via the inositol-1,4,5-trisphosphate receptor. FEBS Lett 561(1–3):29–36

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2001) The pathology of Parkinson’s disease. Adv Neurol 86:55–72

    PubMed  CAS  Google Scholar 

  • Kanthasamy A, Jin H, Mehrotra S, Mishra R, Rana A (2010) Novel cell death signaling pathways in neurotoxicity models of dopaminergic degeneration: relevance to oxidative stress and neuroinflammation in Parkinson’s disease. Neurotoxicology 31(5):555–561

    Article  PubMed  CAS  Google Scholar 

  • Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y et al (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82(1):199–207

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC et al (2011) Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 168(9):904–912

    Article  PubMed  Google Scholar 

  • Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 100(11):6382–6387

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    Article  PubMed  CAS  Google Scholar 

  • Kraemer BC, Schellenberg GD (2007) SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum Mol Genet 16(16):1959–1971

    Article  PubMed  CAS  Google Scholar 

  • Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 100(17):9980–9985

    Article  PubMed  CAS  Google Scholar 

  • Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD (2006) Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet 15(9):1483–1496

    Article  PubMed  CAS  Google Scholar 

  • Kreienkamp HJ (2008) Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 186:365–380. doi:10.1007/978-3-540-72843-6_15

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M et al (2006) Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 281(1):334–340

    Article  PubMed  CAS  Google Scholar 

  • Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W (2000) Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10(5):703–713

    Article  PubMed  CAS  Google Scholar 

  • Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R et al (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86(1):165–172

    Article  PubMed  CAS  Google Scholar 

  • Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–557

    Article  PubMed  CAS  Google Scholar 

  • Lawson-Yuen A, Saldivar JS, Sommer S, Picker J (2008) Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet 16(5):614–618

    Article  PubMed  CAS  Google Scholar 

  • Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377(6547):351–354

    Article  PubMed  CAS  Google Scholar 

  • Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374(9701):1627–1638

    Article  PubMed  Google Scholar 

  • Lewy FH (1912) Paralysis agitans. Pathologische anatomie. In: Lewandowski M (ed) Handbuch der neurologie. Springer, Berlin, pp 920–933

    Google Scholar 

  • Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92(20):9368–9372

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Hamamichi S, Dae Lee B, Yang D, Ray A, Caldwell GA et al (2011) Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson’s disease models. Hum Mol Genet. doi:10.1093/hmg/ddr312

  • Locke CJ, Fox SA, Caldwell GA, Caldwell KA (2008) Acetaminophen attenuates dopamine neuron degeneration in animal models of Parkinson’s disease. Neurosci Lett 439(2):129–133

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8(11):425–427

    Article  PubMed  CAS  Google Scholar 

  • Markesbery WR, Jicha GA, Liu H, Schmitt FA (2009) Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol 68(7):816–822

    Article  PubMed  Google Scholar 

  • McColl G, Roberts BR, Gunn AP, Perez KA, Tew DJ, Masters CL et al (2009) The Caenorhabditis elegans A beta 1-42 model of Alzheimer disease predominantly expresses A beta 3-42. J Biol Chem 284(34):22697–22702

    Article  PubMed  CAS  Google Scholar 

  • McKeith I, Cummings J (2005) Behavioural changes and psychological symptoms in dementia disorders. Lancet Neurol 4(11):735–742

    Article  PubMed  Google Scholar 

  • McKhann GM (2011) Changing concepts of Alzheimer disease. JAMA 305(23):2458–2459

    Article  PubMed  CAS  Google Scholar 

  • Mikolaenko I, Pletnikova O, Kawas CH, O’Brien R, Resnick SM, Crain B et al (2005) Alpha-synuclein lesions in normal aging, Parkinson disease, and Alzheimer disease: evidence from the Baltimore Longitudinal Study of Aging (BLSA). J Neuropathol Exp Neurol 64(2):156–162

    PubMed  CAS  Google Scholar 

  • Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J et al (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81(6):1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Moy SS, Nadler JJ (2008) Advances in behavioral genetics: mouse models of autism. Mol Psychiatry 13(1):4–26

    Article  PubMed  CAS  Google Scholar 

  • Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J et al (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23(3):569–582

    Article  PubMed  CAS  Google Scholar 

  • Nam CI, Chen L (2005) Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci USA 102(17):6137–6142

    Article  PubMed  CAS  Google Scholar 

  • Nass R, Hall DH, Miller DM 3rd, Blakely RD (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 99(5):3264–3269

    Article  PubMed  CAS  Google Scholar 

  • Oh WC, Song HO, Cho JH, Park BJ (2011) ANK repeat-domain of SHN-1 Is indispensable for in vivo SHN-1 function in C. elegans. Mol Cells 31(1):79–84

    Article  PubMed  CAS  Google Scholar 

  • Pan T, Kondo S, Le W, Jankovic J (2009) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969–1978

    Article  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Pu P, Le WD (2006) C. elegans as a model system for Parkinson disease. Neurosci Bull 22(2):124–128

    PubMed  CAS  Google Scholar 

  • Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J et al (2009) LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29(29):9210–9218

    Article  PubMed  CAS  Google Scholar 

  • Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R (2009) 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res 87(3):723–732

    Article  PubMed  CAS  Google Scholar 

  • Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26(3):619–631

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6):657–669

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E, Seifert M, Baumeister R (2007) Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegener Dis 4(2–3):199–217

    Article  PubMed  Google Scholar 

  • Selkoe DJ (2000) The origins of Alzheimer disease: a is for amyloid. JAMA 283(12):1615–1617

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Wolfe MS (2007) Presenilin: running with scissors in the membrane. Cell 131(2):215–221

    Article  PubMed  CAS  Google Scholar 

  • Settivari R, Levora J, Nass R (2009) The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in Caenorhabditis elegans models of manganism and parkinson disease. J Biol Chem 284(51):35758–35768

    Article  PubMed  CAS  Google Scholar 

  • Shastry BS (1998) Molecular genetics of familial Alzheimer disease. Am J Med Sci 315(4):266–272

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A et al (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107(7):893–903

    Article  PubMed  CAS  Google Scholar 

  • Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11(7):490–502

    Article  PubMed  CAS  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95(13):7737–7741

    Article  PubMed  CAS  Google Scholar 

  • Standaert DG, Yacoubian TA (2010) Target validation: the Parkinson disease perspective. Dis Model Mech 3(5–6):259–262

    Article  PubMed  Google Scholar 

  • Starich TA, Herman RK, Kari CK, Yeh WH, Schackwitz WS, Schuyler MW et al (1995) Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139(1):171–188

    PubMed  CAS  Google Scholar 

  • Struhl G, Greenwald I (2001) Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc Natl Acad Sci USA 98(1):229–234

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE (1976) Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275(938):287–297

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE, Brenner S (1974) The DNA of Caenorhabditis elegans. Genetics 77(1):95–104

    PubMed  CAS  Google Scholar 

  • Talebizadeh Z, Bittel DC, Veatch OJ, Butler MG, Takahashi TN, Miles JH (2004) Do known mutations in neuroligin genes (NLGN3 and NLGN4) cause autism? J Autism Dev Disord 34(6):735–736

    Article  PubMed  Google Scholar 

  • Tan EK (2007) The role of common genetic risk variants in Parkinson disease. Clin Genet 72(5):387–393

    Article  PubMed  Google Scholar 

  • Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(R2):R183–R194

    Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395(6705):854

    Article  PubMed  CAS  Google Scholar 

  • Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263(1–2):103–112

    Article  PubMed  CAS  Google Scholar 

  • Turner RS, Suzuki N, Chyung AS, Younkin SG, Lee VM (1996) Amyloids beta40 and beta42 are generated intracellularly in cultured human neurons and their secretion increases with maturation. J Biol Chem 271(15):8966–8970

    Article  PubMed  CAS  Google Scholar 

  • Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70(1):1–32

    Article  PubMed  CAS  Google Scholar 

  • Urano F, Calfon M, Yoneda T, Yun C, Kiraly M, Clark SG et al (2002) A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J Cell Biol 158(4):639–646

    Article  PubMed  CAS  Google Scholar 

  • Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160

    Article  PubMed  CAS  Google Scholar 

  • Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K et al (2006) Neuroligins determine synapse maturation and function. Neuron 51(6):741–754

    Article  PubMed  CAS  Google Scholar 

  • Voineskos AN, Lett TA, Lerch JP, Tiwari AK, Ameis SH, Rajji TK et al (2011) Neurexin-1 and frontal lobe white matter: an overlapping intermediate phenotype for schizophrenia and autism spectrum disorders. PLoS One 6(6):e20982

    Article  PubMed  CAS  Google Scholar 

  • Wan L, Nie G, Zhang J, Luo Y, Zhang P, Zhang Z et al (2011) Beta-amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med 50(1):122–129

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Sliwoski GR, Buttner EA (2011) The relevance of Caenorhabditis elegans genetics for understanding human psychiatric disease. Harv Rev Psychiatry 19(4):210–218

    Article  PubMed  Google Scholar 

  • Wentzell J, Kretzschmar D (2010) Alzheimer’s disease and tauopathy studies in flies and worms. Neurobiol Dis 40(1):21–28

    Article  PubMed  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode C. elegans. Philos Trans R Soc Lond Ser B Biol Sci 314:1–340

    Article  Google Scholar 

  • Wiese M, Antebi A, Zheng H (2010) Intracellular trafficking and synaptic function of APL-1 in Caenorhabditis elegans. PLoS One 5(9):e12790

    Article  CAS  Google Scholar 

  • Wittenburg N, Eimer S, Lakowski B, Rohrig S, Rudolph C, Baumeister R (2000) Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406(6793):306–309

    Article  PubMed  CAS  Google Scholar 

  • Wooten GF (1997) Functional anatomical and behavioral consequences of dopamine receptor stimulation. Ann NY Acad Sci 835:153–156

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C et al (2005) Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 10(4):329–332

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C et al (2008) Neurexin 1alpha structural variants associated with autism. Neurosci Lett 438(3):368–370

    Article  PubMed  CAS  Google Scholar 

  • Yanagida T, Kitamura Y, Yamane K, Takahashi K, Takata K, Yanagisawa D et al (2009) Protection against oxidative stress-induced neurodegeneration by a modulator for DJ-1, the wild-type of familial Parkinson’s disease-linked PARK7. J Pharmacol Sci 109(3):463–468

    Article  PubMed  CAS  Google Scholar 

  • Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W (2007) Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 581(13):2509–2516

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302(5646):826–830

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Lindy M. Holden-Dye for critical reading of the manuscript and for detailed comments. We also are grateful to Dr. Antonio Miranda-Vizuete for his help with the DiI dye-filling assay and valuable support. This work was supported by grant PI0197, Consejería de Salud, Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ruiz-Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calahorro, F., Ruiz-Rubio, M. Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson’s disease, Alzheimer’s disease and autism spectrum disorder. Invert Neurosci 11, 73–83 (2011). https://doi.org/10.1007/s10158-011-0126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-011-0126-1

Keywords

Navigation