Skip to main content

Advertisement

Log in

The regulation of feeding and metabolism in response to food deprivation in Caenorhabditis elegans

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

This review considers the factors involved in the regulation of feeding and metabolism in response to food deprivation using Caenorhabditis elegans as a model organism. Some of the sensory neurons and interneurons involved in food intake are described, together with an overview of pharyngeal pumping. A number of chemical transmitters control feeding in C. elegans including 5-hydroxytryptamine (5-HT, serotonin), acetylcholine, glutamate, dopamine, octopamine, and tyramine. The roles of these transmitters are modified by neuropeptides, including FMRFamide-like peptides (FLPs), neuropeptide-like protein (NLPs), and insulin-like peptides. The precise effects of many of these neuropeptides have yet to be elucidated but increasingly they are being shown to play a role in feeding and metabolism in C. elegans. The regulation of fat stores is complex and appears to involve the expression of a large number of genes, many with mammalian homologues, suggesting that fat regulatory signalling is conserved across phyla. Finally, a brief comparison is made between C. elegans and mammals where for both, despite their evolutionary distance, classical transmitters and neuropeptides have anorectic or orexigenic properties. Thus, there is a rationale to support the argument that an understanding of the molecular and genetic basis of feeding and fat regulation in C. elegans may contribute to efforts aimed at the identification of targets for the treatment of conditions associated with abnormal metabolism and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albertson DG, Thompson JN (1976) The pharynx of Caenorhabditis elegans. Phil Trans Roy Soc Lond B 275:299–325

    Article  CAS  Google Scholar 

  • Alkema MJ, Hunrer-Ensor M, Ringstad N, Horvitz HR (2005) Tyramine functions independently of Octopamine in the Caenorhabditis elegans nervous system. Neuron 46:247–260

    Article  CAS  PubMed  Google Scholar 

  • Altun-Gultekin Z, Andachi Y, Tsalik EL, Pilgrim D, Kohara Y, Hobert O (2001) A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23 controls cell fate specification of a defined interneuron class in C. elegans. Development 128:1951–1969

    CAS  PubMed  Google Scholar 

  • Apfeld J, Kenyon C (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402:804–809

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Anubhut C (2006) Role of neuropeptides in appetite regulation and obesity-A review. Neuropeptides 40:375–401

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi K (2007) Obesity and the regulation of fat metabolism. WormBook, ed. The C. elegans Research Community, WormBook, doi: 10.1895/wormbook. 1.130.1, http://wormbook.org

  • Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulating genes. Nature 421:268–272

    Article  CAS  PubMed  Google Scholar 

  • Avery L (1993a) The genetics of feeding in Caenorhabditis elegans. Genetics 133:897–917

    CAS  PubMed  Google Scholar 

  • Avery L (1993b) Motor-neuron M3 controls pharyngeal muscle-relaxation timing in Caenorhabditis elegans. J Exp Biol 175:283–297

    CAS  PubMed  Google Scholar 

  • Avery L (2010) Caenorhabditis elegans behavioural genetics: where are the knobs? BMC Biology 8:69

    Article  PubMed  CAS  Google Scholar 

  • Avery L, Horvitz HR (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3:473–485

    Article  CAS  PubMed  Google Scholar 

  • Avery L, Horvitz HR (1990) Effects of starvation and neuroactive drugs on feeding in C. elegans. J Exp Zool 253:263–270

    Article  CAS  PubMed  Google Scholar 

  • Avery L, Bargmann CI, Horvitz HR (1993) The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions. Genetics 134:455–464

    CAS  PubMed  Google Scholar 

  • Behm CA (1997) The role of trehalose in the physiology of nematodes. Int J Parasitol 27:215–229

    Article  CAS  PubMed  Google Scholar 

  • Behm CA (2002) Metabolism. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 261–290

    Google Scholar 

  • Bendena WG, Boudreau JR, Papanicolaou T, Maltby M, Tobe SS, Chin-Sang ID (2008) A Caenorhabditis elegans allatostatin/galanin-like receptor NPR-9 inhibits local search behaviour in response to feeding cues. Proc Natl Acad Sci USA 195:1339–1342

    Article  Google Scholar 

  • Brock TJ, Browse J, Watts JL (2006) Genetic regulation of unsaturated fatty acid composition in C. elegans. PLoS Genet 2:e108

    Article  PubMed  CAS  Google Scholar 

  • Brockie PJ, Madsen DM, Zheng Y, Mellem J, Maricq AV (2001) Differential expression of glutamate subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci 21:1510–1522

    CAS  PubMed  Google Scholar 

  • Brooks KK, Liang B, Watts JL (2009) The influence of bacterial diet on fat storage in C. elegans. PLoS ONE 4:e7545

    Article  PubMed  CAS  Google Scholar 

  • Carre-Pierrat M, Baillie D, Johnsen R, Hyde R, Hart A, Granger L, Segalat L (2006) Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors. Invert Neurosci 6:189–205

    Article  CAS  PubMed  Google Scholar 

  • Chalansani SH, Kato S, Albrecht DR, Nakagawa T, Abbott LF, Bargmann CI (2010) Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans olfactory neurons. Nature Neurosci 13:615–621

    Article  CAS  Google Scholar 

  • Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, Bargmann CI (2007) Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450:63–70

    Article  CAS  PubMed  Google Scholar 

  • Chao MY, Komatsu H, Fukuto HS, Dionne HM, Hart AC (2004) Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci USA 101:15512–15517

    Article  CAS  PubMed  Google Scholar 

  • Chartrel N, Dujardin C, Anouar Y, Leprince J, Decker A, Clerens S, Do-Rego JC et al (2003) Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proc Natl Acad Sci USA 100:15247–15252

    Article  CAS  PubMed  Google Scholar 

  • Chiang JTA, Steciuk M, Shtonda B, Avery L (2006) Evolution of pharyngeal behaviour and neuronal function in free-living soil nematodes. J Exp Biol 209:1859–1873

    Article  PubMed  Google Scholar 

  • Coates JC, de Bono M (2002) Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature 419:925–929

    Article  CAS  PubMed  Google Scholar 

  • Cohen M, Reale V, Olofsson B, Knights A, Evans P, de Bono M (2009) Coordinated regulation of foraging and metabolism in C.elegans by RFamide neuropeptide signaling. Cell Metab 9:375–385

    Article  CAS  PubMed  Google Scholar 

  • Croll NA (1975) Indolealkylamines in the coordination of nematode behavioural activities. Can J Zool 53:894–903

    Article  CAS  PubMed  Google Scholar 

  • Croll NA, Smith JM (1978) Integrated behaviour in the feeding phase of Caenorhabditis elegans (Nematoda). J Zool (Lond.) 184:507–517

    Article  Google Scholar 

  • David MW, Fleischhauser R, Dent JA, Joho RH, Avery L (1999) A mutation in the C. elegans EXP-2 Potassium channel that alters feeding behavior. Science 286:2501–2504

    Article  Google Scholar 

  • de Bono M, Bargmann CI (1998) Natural variation in a Neuropeptide Y Receptor homolog modifies social behaviour and food response in C. elegans. Cell 94:679–689

    Article  PubMed  Google Scholar 

  • Dent JA, Davies MW, Avery L (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J 16:5867–5879

    Article  CAS  PubMed  Google Scholar 

  • Dufresne M, Seva C, Fourmy D (2006) Cholecystokinin and gastrin receptors. Physiol Rev 86:805–847

    Article  CAS  PubMed  Google Scholar 

  • Franks CJ, Holden-Dye L, Bull K, Luedtke S, Walker RJ (2006) Anatomy, physiology and pharmacology of Caenorhabditis elegans pharynx: a model to define gene function in a simple neural system. Invert Neurosci 6:105–122

    Article  PubMed  Google Scholar 

  • Gao XB, van den Pol AN (2001) Melanin concentrating hormone depresses synaptic activity of Glutamate and GABA neurons from rat lateral hypothalamus. J Physiol 533:237–252

    Article  CAS  PubMed  Google Scholar 

  • Gray JM, Hill JJ, Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci USA 102:3184–3191

    Article  CAS  PubMed  Google Scholar 

  • Greer ER, Perez C, Van Gilst MR, Lee BH, Ashrafi K (2008) Neural and molecular dissection of a C.elegans sensory circuit that regulates fat and feeding. Cell Met 8:118–131

    Article  CAS  Google Scholar 

  • Hamdan FF, Ungrin MD, Abramovitz M, Ribeiro P (1999) Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem 72:1372–1383

    Article  CAS  PubMed  Google Scholar 

  • Hart AC, Sims S, Kaplan JM (1995) Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378:82–85

    Article  CAS  PubMed  Google Scholar 

  • Hellerer T, Axang C, Brackmann C, Hillertz P, Pilon M, Enejder A (2007) Monitoring of lipid storage in Caenorhabditis elegans using coherent ant-Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci USA 104:14658–14663

    Article  CAS  PubMed  Google Scholar 

  • Hills T, Brockie PJ, Maricq AV (2004) Dopamine and glutamate control area-restricted search behaviour in Caenorhabditis elegans. J Neurosci 24:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Hobson RJ, Geng J, Gray AD, Komuniecki RW (2003) SER-7b, a constitutively active Gα-coupled 5-HT7-like receptor expressed in the Caenorhabditis elegans M4 pharyngeal motoneuron. J Neurochem 87:22–29

    Article  CAS  PubMed  Google Scholar 

  • Hobson RJ, Hapiak VM, Xiao H, Buehrer KL, Kommuniecki PR (2006) SER-7 a Caenorhabditis elegans 5HT7-like receptor is essential for the 5-HT stimulation of pharyngeal pumping and egg-laying. Genetics 172:159–169

    Article  CAS  PubMed  Google Scholar 

  • Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD (1982) Serotonin and octopamine in the nematode C. elegans. Science 216:1012–1014

    Article  CAS  PubMed  Google Scholar 

  • Husson SJ, Clynen E, Baggerman G, Janssen T, Schoofs L (2006) Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC-2/EGL-3): mutant analysis by mass spectrometry. J Neurochem 98:1999–2012

    Article  CAS  PubMed  Google Scholar 

  • Husson SJ, Janssen T, Baggerman G, Bogert B, Kahn-Kirby AH, Ashrafi K, Schoofs L (2007) Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. J Neurochem 102:246–260

    Article  CAS  PubMed  Google Scholar 

  • Janssen T, Meelkop E, Lindemans M, Verstraelen K, Husson SJ, Temmerman L, Nachman RJ, Schoofs L (2008) Discovery of a Cholecystokinin-Gastrin-like signaling system in Nematodes. Endocrinology 149:2826–2839

    Article  CAS  PubMed  Google Scholar 

  • Kageyama H, Takenoya F, Shiba K, Shioda S (2010) Neuronal circuits involving ghrelin in the hypothalamus-mediated regulation of feeding. Neuropeptides 44:133–138

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Avery L (2009) Systemic regulation of starvation response in Caenorhabditis elegans. Genes Develop 23:12–17

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Li C (2004) Expression and regulation of an FMRFamide-related Neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 475:540–550

    Article  CAS  PubMed  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  CAS  PubMed  Google Scholar 

  • Konturek PC, Konturek JW, Czesnikiewcz-Guzik M, Brzozowski T, Sito E, Konturek SJ (2005) Neuro-hormonal control of food intake; Basic mechanisms and clinical implications. J Physiol Pharmacol 56(Supp 6):5–25

    Google Scholar 

  • Lee BH, Ashrafi K (2008) A TRPV channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan. PLoS Genetics 4:e1000213

    Article  PubMed  CAS  Google Scholar 

  • Lee RN, Lobel L, Hengartner M, Horvitz HR, Avery L (1999) Eat-4, a homolog of a mammalian sodium-dependent inorganic phosphate co-transporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19:159–167

    CAS  PubMed  Google Scholar 

  • Leibowitz S, Alexander J (1998) Hypothalamic serotonin in control of eating behaviour, meal size and body weight. Biol Psychiatry 44:851–864

    Article  CAS  PubMed  Google Scholar 

  • Lewis GF, Carpentier A, Adell K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and Type 2 diabetes. Endocrin Rev 23:201–229

    Article  CAS  Google Scholar 

  • Li C (2005) The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131 (Suppl): S109–S127

    Google Scholar 

  • Li C, Kim K (2008) Neuropeptides.WormBook, ed. The C. elegans Research Community, WormBook, doi: 10.1895/wormbook.1.142.1, http://www.wormbook.org

  • Li H, Avery L, Denk W, Hess GP (1997) Identification of chemical synapses in the pharynx of Caenorhabditis elegans. Proc Natl Acad Sci USA 94:5912–5916

    Article  CAS  PubMed  Google Scholar 

  • Li W, Kennedy SG, Ruvkun G (2003) daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Develop 17:844–858

    Article  CAS  PubMed  Google Scholar 

  • Li W, Feng Z, Sternberg PW, Shawn Xu XZ (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440:684–687

    Article  CAS  PubMed  Google Scholar 

  • Liu LX, Spoerke JM, Mulligan EL, Chen J, Reardon B, Westlund B, Abel K, Armstrong B, Hardiman G, King J et al (1999) High-throughput isolation of Caenorhabditis elegans deletion mutants. Genome Res 9:859–867

    Article  CAS  PubMed  Google Scholar 

  • Mak HY, Nelson LS, Basson M, Johnson CD, Ruvkun G (2006) Polygenic control of Caenorhabditis elegans fat storage. Nat Genet 38:363–368

    Article  CAS  PubMed  Google Scholar 

  • Maricq AV, Peckol E, Driscoll M, Bargmann C (1995) glr-1, a C.elegans glutamate receptor that mediates mechanosensory signaling. Nature 378:78–81

    Article  CAS  PubMed  Google Scholar 

  • McKay RM, McKay JP, Avery L, Graff JM (2003) c. elegans: A model for exploring the genetics of fat storage. Devel Cell 4:131–142

    Article  CAS  Google Scholar 

  • McKay JP, Raizen DM, Gottschalk A, Schafer WR, Avery L (2004) eat-2 and eat-18 are required for nicotinic transmission in the Caenorhabditis elegans pharynx. Genetics 166:161–169

    Article  CAS  PubMed  Google Scholar 

  • McKay RM, McKay JP, Suh JM, Avery L, Graff JM (2007) Tripeptidyl peptidase II promotes fat formation in a conserved fashion. EMBO Reports 8:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Mellem JE, Brockie PJ, Zheng Y, Madsen DM, Maricq AV (2002) Decoding of polymodel sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 36:933–944

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Deplancke B, Walhout AJM, Tissenbaum HA (2005) C. elegans tubby regulates life span and fat metabolism by two independent mechanisms. Cell Metabol 2:35–42

    Article  CAS  Google Scholar 

  • Mullaney BC, Ashrafi K (2009) C. elegans fat storage and metabolic regulation. Biochim Biophys Acta 1791:474–478

    CAS  PubMed  Google Scholar 

  • Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    Article  CAS  PubMed  Google Scholar 

  • Nass R, Merchant KM, Ryan T (2008) Caenorhabditis elegans in Parkinson’s disease drug discovery: addressing an unmet clinical need. Mol Interv 8:284–293

    Article  CAS  PubMed  Google Scholar 

  • Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuro-peptide-like gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 98:14000–14005

    Article  CAS  PubMed  Google Scholar 

  • Niacaris T, Avery L (2003) Serotonin regulates repolarization of the C. elegans pharyngeal muscle. J Exp Biol 206:223–231

    Article  CAS  PubMed  Google Scholar 

  • Noben-Trauth K, Naggert JK, North MA, Nishina PM (1996) A candidate gene for the mouse mutation tubby. Nature 380:534–538

    Article  CAS  PubMed  Google Scholar 

  • O’Rahilly S, Farooqi IS (2008) Human obesity: a heritable neurobehavioural disorder that is highly sensitive to environmental conditions. Diabetes 57:2905–2910

    Article  PubMed  CAS  Google Scholar 

  • Packham R, Walker RJ, Holden-Dye L (2010) The effect of a selective octopamine antagonist, epinastine, on pharyngeal pumping in Caenorhabditis elegans. Invert Neurosci 10:47–52

    Google Scholar 

  • Panula P, Aarnisalo AA, Wasowicz K (1996) Neuropeptide FF, a mammalian neuropeptide with multiple functions. Prog Neurobiol 48:461–487

    Article  CAS  PubMed  Google Scholar 

  • Papaioannou S, Marsden D, Franks CJ, Walker RJ, Holden-Dye L (2005) Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. J Neurobiol 65:304–319

    Article  CAS  PubMed  Google Scholar 

  • Papaiouannou S, Holden-Dye L, Walker RJ (2008) The actions of Caenorhabditis elegans neuropeptde-like peptides (NLPs) on body wall muscle of Ascaris suum and pharyngeal muscle of C. elegans. Acta Biol Hung 59(Suppl):189–197

    Article  Google Scholar 

  • Pellerone FI, Archer CA, Behm CA, Grant WN, Lacey MJ, Somerville AC (2003) Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes. Int J Parasitol 33:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, Liu LX, Doberstein SK, Ruvkun G (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15:672–686

    Article  CAS  PubMed  Google Scholar 

  • Rand JB, Duerr JS, Frisby DL (2000) Neurogenetics of vesicular transporters in C. elegans. FASEB J 14:2414–2422

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan R, Cannon SC, Horvitz HR (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408:470–475

    Article  CAS  PubMed  Google Scholar 

  • Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL (1996) Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science 274:1389–1391

    Article  CAS  PubMed  Google Scholar 

  • Rogers CM, Franks CJ, Walker RJ, Burke JF, Holden-Dye L (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine and FMRFamide-like neuropeptides. J Neurobiol 49:235–244

    Article  CAS  PubMed  Google Scholar 

  • Rogers C, Reale V, Kim K, Chatwin H, Li C, Evans P, de Bono M (2003) Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat Neurosci 6:1178–1185

    Article  CAS  PubMed  Google Scholar 

  • Rosen E, Walkey C, Pulgserver P, Splegelman B (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307

    CAS  PubMed  Google Scholar 

  • Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotion rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631

    Article  CAS  PubMed  Google Scholar 

  • Seymour MK, Wright KA, Doncaster CC (1983) The action of the anterior feeding apparatus of Caenorhabditis elegans (Nematoda: Rhabditida). J Zool 201:527–539

    Article  Google Scholar 

  • Shtonda BB, Avery L (2006) Dietary choice behaviour in C. elegans. J Exp Biol 209:89–102

    Article  PubMed  Google Scholar 

  • Speese S, Petri M, Schuske K, Ailon M, Ann K, Iwasaki K, Jorgensen EM, Martin TFJ (2007) UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J Neurosci 27:6150–6162

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan S (2008) Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metabol 7:533–544

    Article  CAS  Google Scholar 

  • Steger KA, Avery L (2004) The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 167:633–643

    Article  CAS  PubMed  Google Scholar 

  • Suo S, Kimura Y, Van Tol HHM (2006) Starvation induces cAMP response element-binding protein-dependent gene expression through Octopamine-Gq signaling in Caenorhabditis elegans. J Neurosci 26:10082–10090

    Article  CAS  PubMed  Google Scholar 

  • Suo S, Culotti JG, Van Tol HHM (2009a) Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO J 28:2437–2448

    Article  CAS  PubMed  Google Scholar 

  • Suo S, Culotti JG, Van Tol HHM (2009b) Dopamine suppresses octopamine signalling in C. elegans: possible involvement of dopamine in the regulation of lifespan. Aging 1:870–874

    CAS  PubMed  Google Scholar 

  • Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signaling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564

    Article  CAS  PubMed  Google Scholar 

  • Tsalik EL, Hobert O (2003) Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol 56:178–197

    Article  PubMed  Google Scholar 

  • Tsalik EL, Niacaria T, Wenick AS, Pau K, Avery L, Hobert O (2003) LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Develop Biol 263:81–102

    Article  CAS  PubMed  Google Scholar 

  • van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR (2005) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLos Biol 3:e53

    Article  PubMed  CAS  Google Scholar 

  • Walker DS, Gower NJD, Ly S, Bradley GL, Baylis HA (2002) Regulated disruption of Inositol 1, 4, 5-Triphosphate signalling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol Biol Cell 13:1329–1337

    Article  CAS  PubMed  Google Scholar 

  • Watts JL (2008) Fattening up without overeating. Cell Metabolism 8:95–96

    Article  CAS  PubMed  Google Scholar 

  • Watts JL (2009) Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrin Metabol 20:58–65

    Article  CAS  Google Scholar 

  • Wenick AS, Hobert O (2004) Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. Develop Cell 6:757–770

    Article  CAS  Google Scholar 

  • White J, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Trans Roy Soc Lond B 314:1–340

    Article  Google Scholar 

  • Wicks SR, Roehrig CJ, Rankin CH (1996) A dynamic network simulation of the nematode tap withdrawal circuit: predictions concerning synaptic function using behavioural criteria. J Neurosci 16:4017–4031

    CAS  PubMed  Google Scholar 

  • Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans lifespan by insulin-like signaling in the nervous system. Science 290:147–150

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Hapiak VM, Smith KA, Lin L, Hobson RJ, Plenefisch J, Komuniecki R (2006) SER-1, a Caenorhabditis elegans 5-HT2-like receptor, and a multi-PDZ domain containing protein (MPZ-1) interact in vulval muscle to facilitate serotonin-stimulated egg-laying. Develop Biol 298:379–391

    Article  CAS  PubMed  Google Scholar 

  • You Y-J, Kim J, Cobb M, Avery L (2006) Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx. Cell Metabol 3:237–245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sarah Luedtke was supported by a studentship from the Gerald Kerkut Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindy Holden-Dye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luedtke, S., O’Connor, V., Holden-Dye, L. et al. The regulation of feeding and metabolism in response to food deprivation in Caenorhabditis elegans . Invert Neurosci 10, 63–76 (2010). https://doi.org/10.1007/s10158-010-0112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-010-0112-z

Keywords

Navigation