Skip to main content

Advertisement

Log in

Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Injection of parathyroid hormone (PTH) rapidly stimulates renal Pi excretion, in part by downregulating NaPi-IIa (Npt2a/SLC34A1) and NaPi-IIc (Npt2c/SLC34A3) transporters. The mechanisms underlying the effects of PTH on NaPi-IIc are not fully elucidated.

Methods

We analyzed the effect of PTH on inorganic phosphate (Pi) reabsorption in Npt2a−/− mice to eliminate the influence of Npt2a on renal Pi reabsorption. In opossum kidney (OK) cells and Xenopus oocytes, we investigated the effect of NaPi-IIc transporter phosphorylation. Studies of mice with mutations of NaPi-IIc protein in which serine and threonine were replaced with either alanine (A), which prevents phosphorylation, or aspartic acid (D), which mimics the charged state of phosphorylated NaPi-IIc, were also performed to evaluate the involvement of phosphorylation in the regulation of transport function.

Results

The Npt2a−/− experiments showed that PTH administration rapidly inactivated NaPi-IIc function in the apical membrane of proximal tubular cells. Analysis of mutant proteins (S71, S138, T151, S174, T583) at putative protein kinase C sites, revealed that S138 markedly suppressed the function and cellular expression of mouse NaPi-IIc in Xenopus oocytes and OK cells. In addition, 138D had a short half-life compared with wild-type protein.

Conclusions

The present study suggests that acute regulation of NaPi-IIc protein by PTH is involved in the inactivation of Na+-dependent Pi cotransporter activity and that phosphorylation of the transporter is involved in the rapid modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wagner CA, Hernando N, Forster IC, Biber J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch. 2014;466(1):139–53.

    Article  CAS  PubMed  Google Scholar 

  2. Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto K. Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab. 2016;34(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA. 1998;95(9):5372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78(2):179–92.

    Article  CAS  PubMed  Google Scholar 

  5. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  6. Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch. 2019;471(1):149–63.

    Article  CAS  PubMed  Google Scholar 

  7. Keusch I, Traebert M, Lotscher M, Kaissling B, Murer H, Biber J. Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II. Kidney Int. 1998;54(4):1224–32.

    Article  CAS  PubMed  Google Scholar 

  8. Biber J, Hernando N, Traebert M, Volkl H, Murer H. Parathyroid hormone-mediated regulation of renal phosphate reabsorption. Nephrol Dial Transplant. 2000;15(Suppl 6):29–30.

    Article  CAS  PubMed  Google Scholar 

  9. Traebert M, Volkl H, Biber J, Murer H, Kaissling B. Luminal and contraluminal action of 1–34 and 3–34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am J Physiol Renal Physiol. 2000;278(5):F792-8.

    Article  PubMed  Google Scholar 

  10. Gattineni J, Friedman PA. Regulation of hormone-sensitive renal phosphate transport. Vitam Horm. 2015;98:249–306.

    Article  CAS  PubMed  Google Scholar 

  11. Murer H, Biber J. Renal sodium-phosphate cotransport. Curr Opin Nephrol Hypertens. 1994;3(5):504–10.

    Article  CAS  PubMed  Google Scholar 

  12. Hayes G, Busch AE, Lang F, Biber J, Murer H. Protein kinase C consensus sites and the regulation of renal Na/Pi-cotransport (NaPi-2) expressed in XENOPUS laevis oocytes. Pflugers Arch. 1995;430(5):819–24.

    Article  CAS  PubMed  Google Scholar 

  13. Deliot N, Hernando N, Horst-Liu Z, Gisler SM, Capuano P, Wagner CA, et al. Parathyroid hormone treatment induces dissociation of type IIa Na+-P(i) cotransporter-Na+/H+ exchanger regulatory factor-1 complexes. Am J Physiol Cell Physiol. 2005;289(1):C159-67.

    Article  CAS  PubMed  Google Scholar 

  14. Weinman EJ, Cunningham R, Wade JB, Shenolikar S. The role of NHERF-1 in the regulation of renal proximal tubule sodium-hydrogen exchanger 3 and sodium-dependent phosphate cotransporter 2a. J Physiol. 2005;567(Pt 1):27–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weinman EJ, Biswas RS, Peng G, Shen L, Turner CL, Xiaofei E, et al. Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1. J Clin Invest. 2007;117(11):3412–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weinman EJ, Steplock D, Zhang Y, Biswas R, Bloch RJ, Shenolikar S. Cooperativity between the phosphorylation of Thr95 and Ser77 of NHERF-1 in the hormonal regulation of renal phosphate transport. J Biol Chem. 2010;285(33):25134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lanzano L, Lei T, Okamura K, Giral H, Caldas Y, Masihzadeh O, et al. Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am J Physiol Cell Physiol. 2011;301(4):C850-61.

    Article  CAS  PubMed  Google Scholar 

  18. Gutierrez OM, Smith KT, Barchi-Chung A, Patel NM, Isakova T, Wolf M. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol. 2012;7(1):139–45.

    Article  CAS  PubMed  Google Scholar 

  19. Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Renal Physiol. 2007;292(1):F395–403.

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto N, Hemmi A, Yamato H, Ohnishi R, Segawa H, Ohno S, et al. Immunohistochemical analyses of parathyroid hormone-dependent downregulation of renal type II Na-Pi cotransporters by cryobiopsy. J Med Invest. 2010;57(1–2):138–45.

    Article  PubMed  Google Scholar 

  21. Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, et al. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol. 2005;288(3):F587-96.

    Article  CAS  PubMed  Google Scholar 

  22. Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol. 2009;297(3):F671-8.

    Article  CAS  PubMed  Google Scholar 

  23. Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, et al. Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol. 2012;302(9):C1316-30.

    Article  CAS  PubMed  Google Scholar 

  24. Ito M, Sakurai A, Hayashi K, Ohi A, Kangawa N, Nishiyama T, et al. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells. Am J Physiol Renal Physiol. 2010;299(1):F243-54.

    Article  CAS  PubMed  Google Scholar 

  25. Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K. Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch. 2003;446(1):106–15.

    Article  CAS  PubMed  Google Scholar 

  26. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, et al. Growth-related renal type II Na/Pi cotransporter. J Biol Chem. 2002;277(22):19665–72.

    Article  CAS  PubMed  Google Scholar 

  27. Forster IC. The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies. Pflugers Arch. 2019;471(1):15–42.

    Article  CAS  PubMed  Google Scholar 

  28. Fenollar-Ferrer C, Forrest LR. Structural models of the NaPi-II sodium-phosphate cotransporters. Pflugers Arch. 2019;471(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  29. Forster IC, Hernando N, Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med. 2013;34(2–3):386–95.

    Article  CAS  PubMed  Google Scholar 

  30. Kohler K, Forster IC, Stange G, Biber J, Murer H. Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am J Physiol Renal Physiol. 2002;282(4):F687-96.

    Article  PubMed  Google Scholar 

  31. Picard N, Capuano P, Stange G, Mihailova M, Kaissling B, Murer H, et al. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch. 2010;460(3):677–87.

    Article  CAS  PubMed  Google Scholar 

  32. Guo J, Song L, Liu M, Segawa H, Miyamoto K, Bringhurst FR, et al. Activation of a non-cAMP/PKA signaling pathway downstream of the PTH/PTHrP receptor is essential for a sustained hypophosphatemic response to PTH infusion in male mice. Endocrinology. 2013;154(5):1680–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagai S, Okazaki M, Segawa H, Bergwitz C, Dean T, Potts JT Jr, et al. Acute down-regulation of sodium-dependent phosphate transporter NPT2a involves predominantly the cAMP/PKA pathway as revealed by signaling-selective parathyroid hormone analogs. J Biol Chem. 2011;286(2):1618–26.

    Article  CAS  PubMed  Google Scholar 

  34. Jacquillet G, Unwin RJ. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch. 2019;471(1):83–98.

    Article  CAS  PubMed  Google Scholar 

  35. Cunningham R, Biswas R, Brazie M, Steplock D, Shenolikar S, Weinman EJ. Signaling pathways utilized by PTH and dopamine to inhibit phosphate transport in mouse renal proximal tubule cells. Am J Physiol Renal Physiol. 2009;296(2):F355-61.

    Article  CAS  PubMed  Google Scholar 

  36. Moe OW. Acute regulation of proximal tubule apical membrane Na/H exchanger NHE-3: role of phosphorylation, protein trafficking, and regulatory factors. J Am Soc Nephrol. 1999;10(11):2412–25.

    CAS  PubMed  Google Scholar 

  37. Collazo R, Fan L, Hu MC, Zhao H, Wiederkehr MR, Moe OW. Acute regulation of Na+/H + exchanger NHE3 by parathyroid hormone via NHE3 phosphorylation and dynamin-dependent endocytosis. J Biol Chem. 2000;275(41):31601–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Support Center for Advanced Medical Sciences, Tokushima University Graduate School of Biomedical Sciences. This study was in part supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (no. 23689045 to H. Segawa, no. 26293204 to K. Miyamoto), and The Salt Science Research Foundation (Japan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroko Segawa or Ken-ichi Miyamoto.

Ethics declarations

Conflict of interest

Authors have declared that no conflict of interest exists.

Human and animal right

This article does not contain any studies with human performed by any of the authors. Mice were handled in accordance with the Guidelines for Animal Experimentation of Tokushima University School of Medicine (T29-3).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 968 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, T., Segawa, H., Hanazaki, A. et al. Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation. Clin Exp Nephrol 23, 898–907 (2019). https://doi.org/10.1007/s10157-019-01725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-019-01725-6

Keywords

Navigation