Skip to main content
Log in

Aquaporin water channels in mammals

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Ten aquaporins have been cloned from various mammalian tissues. They are grouped according to their structure and function. The first group consists of 7 aquaporins; AQP0, 1, 2, 4, 5, 6, and 8. These channel molecules selectively transport water and do not transport glycerol and urea. The second group consists of 3 aquaporins; AQP3, 7, and 9. They transport not only water, but also small nonionic molecules such as glycerol and urea. The extensive tissue distribution and physiologic regulation by dehydration and hormones of these aquaporins suggest that aquaporins have important functions in water and solute transport in the body. However, the recent studies of knockout animals and humans with defective mutations of aquaporins showed unexpectedly small phenotypic effects. It is possible that other, unidentified aquaporins may compensate for these deficiencies. The future challenge of research in aquaporins should be the identification of their physiologic significance, and the discovery of new members, which will expand the research area of water metabolism and deepen our understanding of the physiology and pathophysiology of water transport in our body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verkman AS, Van Hoek AN, Ma T, Frigeri A, Skach WR, Mitra AM, Tamarappoo BK, Farinas J. Water transport across mammalian cell membranes. Am J Physiol 1996;270:C12-C30.

    PubMed  CAS  Google Scholar 

  2. King LS, Agre P. Pathophysiology of the aquaporin water channels. Ann Rev Physiol 1996;58:619–648.

    Article  CAS  Google Scholar 

  3. Lee MD, King LS, Agre P. The aquaporin family of water channel proteins in clinical medicine. Medicine 1997; 76:141–156.

    Article  PubMed  CAS  Google Scholar 

  4. Park JH, Saier MH Jr. Phylogenetic characterization of the MIP family of transmembrane channel proteins. J. Membr Biol 1996;153:171–180.

    Article  PubMed  CAS  Google Scholar 

  5. Ishibashi K, Sasaki S. The dichotomy of MIP family suggests the two separate origins of water channels. News Physiol Sci (in press).

  6. Chandy G, Zampighi GA, Kreman M, Hall JE. Comparison of the water transporting properties of MIP and AQP. J Membr Biol 1997;159:29–39.

    Article  PubMed  CAS  Google Scholar 

  7. Shiels A, Bassnett S. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet 1996;12:212–215.

    Article  PubMed  CAS  Google Scholar 

  8. Marinelli RA, Pham L, Agree P, LaRusso NF. Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-I water channels in plasma membrane: evidence for a secretin-induced vesicular translocation of aquaporin-1. J Biol Chem 1997;272: 12984–12988.

    Article  PubMed  CAS  Google Scholar 

  9. Yool AJ, Starner VVD, Regan JW. Forskolin stimulation of water and cation permeability in aquaporin 1 water channels. Science 1996;273:1216–1218.

    PubMed  CAS  Google Scholar 

  10. Patil RV, Han Z, Wax M. Regulation of water channel activity of aquaporin 1 by arginine vasopressin and atrial natriuretic peptide. Biochem Biophys Res Commun 1997;238:392–396.

    Article  PubMed  CAS  Google Scholar 

  11. Rai T, Uchida S, Maramo F, Sasaki S. Cloning of rat and mouse aquaporin-2 gene promoters and identification of a negative cis-regulatory elements. Am J Physiol 1997;273:F264-F273.

    PubMed  CAS  Google Scholar 

  12. Fushimi K, Sasaki S, Marumo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytoses of the aquaporin-2 water channel. J Biol Chem 1997;272:14800–14804.

    Article  PubMed  CAS  Google Scholar 

  13. Kuwahara M, Fushimi K, Terada Y, Bai L, Marumo F, Sasaki S. cAMP dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed inXenopus oocytes. J Biol Chem 1995;270:10384–10387.

    Article  PubMed  CAS  Google Scholar 

  14. Lande MB, Jo I, Zeidel MI, Somers M, Harris HW Jr. Phosphorylation of aquaporin-2 does not alter the membrane water permeability of fat papillary water channel containing vesicles. J Biol Chem 1996;271:5552–5557.

    Article  PubMed  CAS  Google Scholar 

  15. Nelson RD, Stricklett PK, Ausiello DA, Brown D, Kohan DE. Expression of the aquaporin-2 promoter in transgenic mice: tissue localization and potential use in cell specific knockouts. J Am Soc Nephrol 1997;8:AO108 (abstr).

    Google Scholar 

  16. Abrami L, Tacnet F, Ripoche P. Evidence for a glycerol pathway through aquaporin 1 (CHIP28) channel. Pflugers Arch 1995;430:447–458.

    Article  PubMed  CAS  Google Scholar 

  17. Yang B, Verkman AS. Water and glycerol permeabilities of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs inXenopus oocytes. J Biol Chem 1997;272:16140–16146.

    Article  PubMed  CAS  Google Scholar 

  18. Roudier N, Gobin R, Rousselet G, Ripoche P, Tacnet F. Evidence for the presence of aquaporin-3 in human red blood cells. J Am Soc Nephrol 1997;8:AO116 (abstr).

    Google Scholar 

  19. Ishibashi K, Sasaki S, Fushimi K, Yamamoto T, Kuwahara M, Marumo P. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am J Physiol 1997;272: F235-F241.

    PubMed  CAS  Google Scholar 

  20. Tanaka M, Inase N, Fushimi K, Ishibashi K, Ichioka M, Sasaki S, Marumo F. Induction of aquaporin 3 by corticosteroid in a human airway epithelial cell line. Am J Physiol 1997;273:L1090-L1095.

    PubMed  CAS  Google Scholar 

  21. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 1997;100:957–962.

    Article  PubMed  CAS  Google Scholar 

  22. Yang B, Ma T, Verkman AS. cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. J Biol Chem 1995:270:22907–22913.

    Article  PubMed  CAS  Google Scholar 

  23. King LS, Nielsen S, Agre P. Aquaporins in complex tissues. I. Developmental patterns in respiratory and glandular tissues of rat. Am J Physiol 1997;273:C1541-C1548.

    PubMed  CAS  Google Scholar 

  24. Ishida N, Hirai S, Mita S. Immunolocalization of aquaporin homologs in mouse lacrimal glands. Biochem Biophys Res Commun 1997;238:891–894.

    Article  PubMed  CAS  Google Scholar 

  25. Ma T, Yang B, Kuo W, Verkman AS. cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 1996;35:543–550.

    Article  PubMed  CAS  Google Scholar 

  26. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S. Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 1997;272:20782–20786.

    Article  PubMed  CAS  Google Scholar 

  27. Kuriyama H, Kawamoto S, Ishida N, Ohno I, Mita S, Matsuzawa Y, Matsubara K, Okubo K. Molecular cloning and expression of a novel human aquaporin (AQP) from adipose tissue with glycerol permeability. Biochern Biophys Res Commun. 1997;241:53–58.

    Article  CAS  Google Scholar 

  28. Philips J, Herkowitz J. Osmotic balance regulates cell fusion during mating inSaccaromyces cervisiae. J Cell Biol 1997;138:961–974.

    Article  PubMed  CAS  Google Scholar 

  29. Preston GM, Smith BL, Zeidel ML, Moulds JJ, Agre P. Mutations in aquaporin 1 in phenotypically normal human without functional CHIP water channels. Science 1994;265:1585–1587.

    PubMed  CAS  Google Scholar 

  30. Ishibashi K, Kuwahara M, Kageyama Y, Tohsaka A, Marumo F, Sasaki S. Cloning and functional expression of a second new aquaporin abundantly expressed in the testis. Biochem Biophys Res Commun 1997; 237:714–718.

    Article  PubMed  CAS  Google Scholar 

  31. Koyama Y, Yamamoto T, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K, Kihara I. Molecular cloning of a new aquaporin from rat pancreas and liver. J Biol Chem 1997;272:30329–30333.

    Article  PubMed  CAS  Google Scholar 

  32. Yano M, Marinelli RA, Roberts SK, Baian V, Pham L, Tarara JE, de Groen PC, LaRusso NF. Rat hepatocytes transport water mainly via a non-channel-mediated pathway. J Biol Chem 1996;271:6702–6707.

    Article  PubMed  CAS  Google Scholar 

  33. Hempling HG, Thompson S, Dupre A. Osmotic properties of human lymphocytes. J Cell Physiol 1977;93:293–302.

    Article  PubMed  CAS  Google Scholar 

  34. Echevarria M, Windhager EE, Frindt G. Selectivity of the renal collecting duct water channel aquaporin-3. J Biol Chem 1996;271;25079–25082.

    Article  PubMed  CAS  Google Scholar 

  35. Kuwahara M, Gu Y, Ishibashi K, Marumo F, Sasaki S. Mercury-sensitive residues and pore site in AQP3 water channel. Biochemistry 1997;36:13973–13978.

    Article  PubMed  CAS  Google Scholar 

  36. Li H, Lee S, Jap BK. Molecular design of aquaporin-1 water channel as revealed by electron crystallography. Nat Struct Biol 1997;4:263–265.

    Article  PubMed  CAS  Google Scholar 

  37. Walz T, Hirai T, Murata K, Heymann JB, Mitsuoka K, Fujiyoshi Y, Smith BL, Agre P, Engel A. The three-dimensional structure of aquaporin-1. Nature 1997; 387:624–627.

    Article  PubMed  CAS  Google Scholar 

  38. Cheng A, van Hoek AN, Yeager M, Verkman AS, Mitra AK. Three-dimensional organization of a human water channel. Nature 1997;387:627–630.

    Article  PubMed  CAS  Google Scholar 

  39. Ma T, Yang B, Umenishi F, Verkman AS. Closely spaced tandem arrangement of AQP2, AQP5, and AQP6 genes in a 27-kilobase segment at chromosome locus 12q13. Genomics 1997;43:387–389.

    Article  PubMed  CAS  Google Scholar 

  40. Weig A, Deswarter C, Chrispeels MJ. The major intrinsic protein family ofArabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol 1997;114:1347–1357.

    Article  PubMed  CAS  Google Scholar 

  41. Loo DD, Zeuthen T, Chandy G, Wright EM. Cotransport of water by the Na/glucose cotransporter. Proc Natl Acad Sci USA 1996;93:13367–13370.

    Article  PubMed  CAS  Google Scholar 

  42. Schreiber R, Greger R, Nitschke R, Kunzelmarm K. Cystic fibrosis transmembrane conductance regulator activates water conductance inXenopus oocytes. Pflugers Arch 1997;434:841–847.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ishibashi, K., Sasaki, S. Aquaporin water channels in mammals. Clin Exper Neph 1, 247–253 (1997). https://doi.org/10.1007/BF02480636

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480636

Key words

Navigation