Skip to main content
Log in

Immunohistochemical localization of aquaporin 10 in the apical membranes of the human ileum: a potential pathway for luminal water and small solute absorption

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

A new member of the aquaporin family (AQP10) has recently been identified in the human small intestine by molecular cloning and in situ hybridization. Ribonuclease protection assay and northern blotting have demonstrated that AQP10 is expressed in the human duodenum and jejunum. However, the subcellular distribution of the AQP10 protein and its plasma membrane polarization have not yet been established. The objective of this study was to determine the distribution of the AQP10 protein in the human ileum by immunohistochemistry and western blotting using a polyclonal antibody raised against a unique 17-amino acid peptide derived from the human AQP10 sequence. The distribution of the AQP1 and AQP3 proteins was also studied by immunohistochemical staining using affinity-purified polyclonal antibodies. Results revealed that the AQP10 protein is preferentially targeted to the apical membrane domain of absorptive intestinal epithelial cells, whereas AQP3 is located in the basolateral membrane of the cells and AQP1 expression is restricted to the mucosal microvascular endothelia. The presence of AQP10 in the apical membrane of intestinal villi suggests that this protein may represent an entry pathway for water and small solutes from the lumen across to the mucosal side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F
Fig. 2A–O
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=33&c=Gene&l=AQP10, NCBI AceView, April 2003

References

  • Agre P, Nielsen S (1996) The aquaporin family of water channels in kidney. Nephrologie 17:409–415

    CAS  Google Scholar 

  • Agre P, Saboori AM, Asimos A, Smith BL (1987) Purification and partial characterization of the Mr 30,000 integral membrane protein associated with the erythrocyte Rh(D) antigen. J Biol Chem 262:17497–17503

    CAS  PubMed  Google Scholar 

  • Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463–F476

    CAS  PubMed  Google Scholar 

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels: from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  CAS  PubMed  Google Scholar 

  • Alves P, Soveral G, Macey RI, Moura TF (1999a) Kinetics of water transport in eel intestinal vesicles. J Membr Biol 171:177–182

    Article  CAS  PubMed  Google Scholar 

  • Alves P, Soveral G, Macey RI, Moura TF (1999b) Osmotic equilibrium and elastic properties of eel intestinal vesicles. J Membr Biol 171:171–176

    Article  CAS  PubMed  Google Scholar 

  • Brown D, Katsura T, Kawashima M, Verkman AS, Sabolic I (1995) Cellular distribution of the aquaporins: a family of water channel proteins. Histochem Cell Biol 104:1–9

    CAS  PubMed  Google Scholar 

  • Calamita G, Mazzone A, Bizzoca A, Cavalier A, Cassano G, Thomas D, Svelto M (2001) Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. Eur J Cell Biol 80:711–719

    Google Scholar 

  • Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642

    CAS  PubMed  Google Scholar 

  • Devuyst O, Burrow CR, Smith BL, Agre P, Knepper MA, Wilson PD (1996) Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am J Physiol 271:F169–F183

    CAS  PubMed  Google Scholar 

  • Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91:10997–11001

    CAS  PubMed  Google Scholar 

  • Engel A, Stahlberg H (2002) Aquaglyceroporins: channel proteins with a conserved core, multiple functions, and variable surfaces. Int Rev Cytol 215:75–104

    Article  CAS  Google Scholar 

  • Fushimi K, Marumo F (1995) Water channels. Curr Opin Nephrol Hypertens 4:392–397

    CAS  Google Scholar 

  • Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T (2001) Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287:814–819

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T, et al (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91:6269–6273

    CAS  PubMed  Google Scholar 

  • Ishibashi K, Sasaki S, Saito F, Ikeuchi T, Marumo F (1995) Structure and chromosomal localization of a human water channel (AQP3) gene. Genomics 27:352–354

    Article  CAS  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    CAS  PubMed  Google Scholar 

  • Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576:335–340

    Article  CAS  PubMed  Google Scholar 

  • Loo DD, Zeuthen T, Chandy G, Wright EM (1996) Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci U S A 93:13367–13370

    Article  CAS  PubMed  Google Scholar 

  • Loo DD, Hirayama BA, Meinild AK, Chandy G, Zeuthen T, Wright EM (1999) Passive water and ion transport by cotransporters. J Physiol 518:195–202

    CAS  Google Scholar 

  • Ma T, Verkman AS (1999) Aquaporin water channels in gastrointestinal physiology. J Physiol 517:317–326

    CAS  PubMed  Google Scholar 

  • Maunsbach AB, Marples D, Chin E, Ning G, Bondy C, Agre P, Nielsen S (1997) Aquaporin-1 water channel expression in human kidney. J Am Soc Nephrol 8:1–14

    CAS  PubMed  Google Scholar 

  • Mobasheri A, Marples D (2004) Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286:C529–C537

    Article  CAS  PubMed  Google Scholar 

  • Mobasheri A, Avila J, Cozar-Castellano I, Brownleader MD, Trevan M, Francis MJ, Lamb JF, Martin-Vasallo P (2000) Na+, K+-ATPase isozyme diversity: comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91

    Article  CAS  PubMed  Google Scholar 

  • Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K (2002) Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun 294:630–634

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Agre P (1995) The aquaporin family of water channels in kidney. Kidney Int 48:1057–1068

    CAS  PubMed  Google Scholar 

  • Pastor-Soler N, Bagnis C, Sabolic I, Tyszkowski R, McKee M, Van Hoek A, Breton S, Brown D (2001) Aquaporin 9 expression along the male reproductive tract. Biol Reprod 65:384–393

    CAS  PubMed  Google Scholar 

  • Purdy MJ, Cima RR, Doble MA, Klein MA, Zinner MJ, Soybel DI (1999) Selective decreases in levels of mRNA encoding a water channel (AQP3) in ileal mucosa after ileostomy in the rat. J Gastrointest Surg 3:54–60

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Lorca R, Vizuete ML, Venero JL, Revuelta M, Cano J, Ilundain AA, Echevarria M (1999) Localization of aquaporin-3 mRNA and protein along the gastrointestinal tract of Wistar rats. Pflugers Arch 438:94–100

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Fushimi K, Saito H, Saito F, Uchida S, Ishibashi K, Kuwahara M, Ikeuchi T, Inui K, Nakajima K, et al (1994) Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J Clin Invest 93:1250–1256

    CAS  Google Scholar 

  • Sasaki S, Kuwahara M, Yamashita Y, Marumo F (2000) Structure and function of AQP2. Nephrol Dial Transplant 15(suppl 6):21–22

    Article  CAS  Google Scholar 

  • Stumpel F, Burcelin R, Jungermann K, Thorens B (2001) Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum. Proc Natl Acad Sci U S A 98:11330–11335

    Article  CAS  Google Scholar 

  • van Heeswijk MP, van Os CH (1986) Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J Membr Biol 92:183–193

    PubMed  Google Scholar 

  • Verkman AS (2002a) Physiological importance of aquaporin water channels. Ann Med 34:192–200

    CAS  PubMed  Google Scholar 

  • Verkman AS (2002b) Renal concentrating and diluting function in deficiency of specific aquaporin genes. Exp Nephrol 10:235–240

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS (2003) Role of aquaporin water channels in eye function. Exp Eye Res 76:137–143

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28

    CAS  PubMed  Google Scholar 

  • Walz T, Typke D, Smith BL, Agre P, Engel A (1995) Projection map of aquaporin-1 determined by electron crystallography. Nat Struct Biol 2:730–732

    PubMed  Google Scholar 

  • Wang W, Hart PS, Piesco NP, Lu X, Gorry MC, Hart TC (2003) Aquaporin expression in developing human teeth and selected orofacial tissues. Calcif Tissue Int 72:222–227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this study was provided by grants from the University of Liverpool Research Development Fund, the Pet Plan Charitable Trust, UK (A.M.) and the Medical Research Council, UK (D.M.). The authors wish to thank Dr. Christopher A. Moskaluk (Departments of Pathology, Biochemistry, and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia) and the staff of the Cooperative Human Tissue Network of The National Cancer Institute (the National Institutes of Health, Bethesda, Maryland). The assistance of Rachel V. Floyd with the western blot experiments is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mobasheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mobasheri, A., Shakibaei, M. & Marples, D. Immunohistochemical localization of aquaporin 10 in the apical membranes of the human ileum: a potential pathway for luminal water and small solute absorption. Histochem Cell Biol 121, 463–471 (2004). https://doi.org/10.1007/s00418-004-0657-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0657-1

Keywords

Navigation