Skip to main content

Advertisement

Log in

Jab1/Cops5: a promising target for cancer diagnosis and therapy

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

C-Jun activation domain-binding protein1 (Jab1), the fifth component of the constitutive photomorphogenic-9 signalosome (COPS5/Csn5) complex, functions in several cellular processes to affect different signaling pathways. Dysregulation of Jab1/Csn5 both restrains tumor suppressors and activates oncogenes to contribute oncogenesis. Jab1 overexpressed in various tumors and played an essential part in cancer initiation, progression and prognosis, which has spurred strong research interest in developing inhibitors for cancer therapy. Here, we summarize the multiple signaling pathways and functions of Jab1/Csn5 in tumorigenesis. By querying the Oncomine database, a cancer microarray database and web-based data-mining platform aimed at facilitating discovery from genome-wide expression analyses, we investigated statistically the differential expression of Jab1/Csn5 between different cancer samples and the corresponding normal tissue samples, cancer samples with different histological types, different cancer types, and different clinical outcomes. These statistical data confirmed the significant role of Jab1/Csn5 in carcinogenesis, indicating Jab1/Csn5 as a biomarker and a therapeutic target in different cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Claret FX, Hibi M (1996) A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383(6599):453–457

    Article  CAS  Google Scholar 

  2. Chamovitz DA, Segal D (2001) JAB1/CSN5 and the COP9 signalosome. A complex situation. EMBO Rep 2(2):96–101. https://doi.org/10.1093/embo-reports/kve028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwechheimer C, Deng XW (2001) COP9 signalosome revisited: a novel mediator of protein degradation. Trends Cell Biol 11(10):420–426. https://doi.org/10.1016/s0962-8924(01)02091-8

    Article  CAS  PubMed  Google Scholar 

  4. Shen Q, Shang B, Jiang B et al (2020) Overexpression of JAB1 promotes malignant behavior and predicts poor prognosis in esophageal squamous cell carcinoma. Thorac Cancer 11(4):973–982. https://doi.org/10.1111/1759-7714.13350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shackleford TJ, Claret FX (2010) JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div 5:26. https://doi.org/10.1186/1747-1028-5-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao H, Francois-Xavier C, Shen Q (2019) The novel Jab1 inhibitor CSN5i-3 suppresses cell proliferation and induces apoptosis in human breast cancer cells. Neoplasma 66(3):481–486

    Article  CAS  Google Scholar 

  7. Pan Y, Wang S, Su B et al (2017) Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression. Oncogene 36(8):1069–1079. https://doi.org/10.1038/onc.2016.271

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Zheng JN, Pei DS (2016) The emerging roles of Jab1/CSN5 in cancer. Med Oncol 33(8):90. https://doi.org/10.1007/s12032-016-0805-1

    Article  CAS  PubMed  Google Scholar 

  9. Danielpour D, Purighalla S, Wang E et al (2019) JAB1/COPS5 is a putative oncogene that controls critical oncoproteins deregulated in prostate cancer. Biochem Biophys Res Commu 518(2):374–380

    Article  CAS  Google Scholar 

  10. Guo Z, Wang Y, Zhao Y et al (2019) The pivotal oncogenic role of Jab1/CSN5 and its therapeutic implications in human cancer. Gene 687:219–227. https://doi.org/10.1016/j.gene.2018.11.061

    Article  CAS  PubMed  Google Scholar 

  11. Samsa WE, Mamidi MK, Bashur LA et al (2020) The crucial p53-dependent oncogenic role of JAB1 in osteosarcoma in vivo. Oncogene 39(23):4581–4591. https://doi.org/10.1038/s41388-020-1320-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo HJL, Cheng Y, Atsaves V et al (2016) Down-regulation of the cyclin-dependent kinase inhibitor p57 is mediated by Jab1/Csn5 in hepatocarcinogenesis. Hepatology 63(3):898–913

    Article  CAS  Google Scholar 

  13. Pan Y, Zhang Q, Tian L et al (2012) Jab1/CSN5 negatively regulates p27 and plays a role in the pathogenesis of nasopharyngeal carcinoma. Cancer Res 72(7):1890–1900. https://doi.org/10.1158/0008-5472.CAN-11-3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim BC, Lee HJ, Park SH et al (2004) Jab1/CSN5, a Component of the COP9 Signalosome, Regulates Transforming Growth Factor β Signaling by Binding to Smad7 and Promoting Its Degradation. Mol Cell Biol 24(6):2251–2262

    Article  CAS  Google Scholar 

  15. Wei N, De Ng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19(1):261–286

    Article  CAS  Google Scholar 

  16. Cayli S, Eyibilen A, Gurbuzler L et al (2012) Jab1 expression is associated with TGF-β1 signaling in chronic rhinosinusitis and nasal polyposis. Acta Histochem 114(1):12–17

    Article  CAS  Google Scholar 

  17. Kamitori K, Yamaguchi F, Dong Y et al (2018) Both Ser361 phosphorylation and the C-arrestin domain of thioredoxin interacting protein are important for cell cycle blockade at the G1/S checkpoint. FEBS Open Bio 8(11):1804–1819

    Article  CAS  Google Scholar 

  18. Tomoda K, Kubota Y, Kato JY (1999) Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398(6723):160–165

    Article  CAS  Google Scholar 

  19. Zhou F, Pan Y, Wei Y et al (2017) Jab1/Csn5-thioredoxin signaling in relapsed acute monocytic leukemia under oxidative stress. Clin Cancer Res 23(15):4450–4461. https://doi.org/10.1158/1078-0432.CCR-16-2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou R, Shao Z, Liu J et al (2017) COPS5 and LASP1 synergistically interact to downregulate 14-3-3σ expression and promote colorectal cancer progression via activating PI3K/AKT pathway. Int J Cancer 142:1853–1864

    Article  Google Scholar 

  21. Schwarz A, Bonaterra GA, Schwarzbach H et al (2017) Oxidized LDL-induced JAB1 influences NF-κB independent inflammatory signaling in human macrophages during foam cell formation. J Biomed Sci 24(1):12

    Article  Google Scholar 

  22. Guo Z, Lu Q, Zhang Y et al (2014) Expression and significance of c-Jun activation domain binding protein 1 in human colorectal carcinoma. Zhonghua Yi Xue Za Zhi 94(12):899–902

    CAS  PubMed  Google Scholar 

  23. Li SR, Su YP, Liu YJ et al (2004) JAB1 interacts with GR and enhances GR-mediated transcription. Progr Biochem Biophys 31(2):141–145

    CAS  Google Scholar 

  24. Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19:261–286. https://doi.org/10.1146/annurev.cellbio.19.111301.112449

    Article  CAS  PubMed  Google Scholar 

  25. Ambroggio XI, Rees DC, Deshaies RJ (2004) JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol 2(1):E2. https://doi.org/10.1371/journal.pbio.0020002

    Article  CAS  PubMed  Google Scholar 

  26. Lingaraju GM, Bunker RD, Cavadini S et al (2014) Crystal structure of the human COP9 signalosome. Nature 512(7513):161–165. https://doi.org/10.1038/nature13566

    Article  CAS  PubMed  Google Scholar 

  27. Pan Y, Wang M, Bu X et al (2013) Curcumin analogue T83 exhibits potent antitumor activity and induces radiosensitivity through inactivation of Jab1 in nasopharyngeal carcinoma. BMC Cancer 13:1–9

    Article  Google Scholar 

  28. Pan Y, Zhang Q, Atsaves V et al (2013) Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene 32(22):2756–2766. https://doi.org/10.1038/onc.2012.294

    Article  CAS  Google Scholar 

  29. Pan Y, Zhou F, Zhang R et al (2013) Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma. PLoS ONE 8(1):e54565. https://doi.org/10.1371/journal.pone.0054565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu MC, Huang CC, Chang HC et al (2008) Overexpression of Jab1 in hepatocellular carcinoma and its inhibition by peroxisome proliferator-activated receptorγ ligands in vitro and in vivo. Clin Cancer Res 14(13):4045

    Article  CAS  Google Scholar 

  31. Pandey P, Siddiqui MH, Behari A et al (2019) Jab1-siRNA induces cell growth inhibition and cell cycle arrest in gall bladder cancer cells via targeting Jab1 signalosome. Anticancer Agents Med Chem 19(16):2019–2033. https://doi.org/10.2174/1871520619666190725122400

    Article  CAS  PubMed  Google Scholar 

  32. Esteva FJ, Sahin AA, Rassidakis GZ et al (2003) Jun activation domain binding protein 1 expression is associated with low p27(Kip1)levels in node-negative breast cancer. Clin Cancer Res 9(15):5652–5659

    CAS  PubMed  Google Scholar 

  33. Kouvaraki MA, Rassidakis GZ, Tian L et al (2003) Jun activation domain-binding protein 1 expression in breast cancer inversely correlates with the cell cycle inhibitor p27Kip1. Can Res 63(11):2977–2981

    CAS  Google Scholar 

  34. Sui L, Dong Y, Ohno M et al (2001) Jab1 expression is associated with inverse expression of p27(kip1) and poor prognosis in epithelial ovarian tumors. Clin Cancer Res 7(12):4130–4135

    CAS  PubMed  Google Scholar 

  35. Osoegawa A, Yoshino I, Kometani T et al (2006) Overexpression of Jun activation domain-binding protein 1 in nonsmall cell lung cancer and its significance in p27 expression and clinical features. Cancer 107(1):154–161. https://doi.org/10.1002/cncr.21961

    Article  CAS  PubMed  Google Scholar 

  36. Gao L, Huang S, Ren W et al (2012) Jun activation domain-binding protein 1 expression in oral squamous cell carcinomas inversely correlates with the cell cycle inhibitor p27. Med Oncol 29(4):2499–2504. https://doi.org/10.1007/s12032-012-0177-0

    Article  CAS  PubMed  Google Scholar 

  37. Ahn J, Hong SA, Lee SE et al (2009) Cytoplasmic localization of Jab1 and p27 Kip1 might be associated with invasiveness of papillary thyroid carcinoma. Endocr J 56(5):707

    Article  Google Scholar 

  38. Dong Y, Sui L, Watanabe Y et al (2005) Prognostic significance of Jab1 expression in laryngeal squamous cell carcinomas. Clin Cancer Res 11(1):259–266

    CAS  PubMed  Google Scholar 

  39. Xu T, Su B, Wang C et al (2015) Molecular markers to assess short-term disease local recurrence in nasopharyngeal carcinoma. Oncol Rep 33(3):1418–1426. https://doi.org/10.3892/or.2015.3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adler AS, Lin M, Horlings H et al (2006) Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet 38(4):421–430. https://doi.org/10.1038/ng1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ivanka D, Beatrice O, Vincent N et al (2009) Genomic markers for ovarian cancer at chromosomes 1, 8 and 17 revealed by array CGH analysis. Tumori 95(3):357–366

    Article  Google Scholar 

  42. Xiao H, Claret FX, Shen Q (2019) The novel Jab1 inhibitor CSN5i-3 suppresses cell proliferation and induces apoptosis in human breast cancer cells. Neoplasma 66(3):481–486. https://doi.org/10.4149/neo_2018_181016N772

    Article  CAS  PubMed  Google Scholar 

  43. Chen X, Jia Y, Zhang Y et al (2020) α5-nAChR contributes to epithelial–senchymal transition and metastasis by regulating Jab1/Csn5 signalling in lung cancer. J Cell Mol Med 24(4):2497–2506

    Article  CAS  Google Scholar 

  44. Shackleford TJ, Zhang Q, Tian L et al (2011) Stat3 and CCAAT/enhancer binding protein beta (C/EBP-beta) regulate Jab1/CSN5 expression in mammary carcinoma cells. Breast Cancer Res 13(3):R65. https://doi.org/10.1186/bcr2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tavazoie SF, Alarcon C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152. https://doi.org/10.1038/nature06487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang S, Pan Y, Zhang R et al (2016) Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3′UTR and 5′UTR of Jab1/CSN5. Oncogene 35:6096–6108

    Article  CAS  Google Scholar 

  47. Wang S, Oh DY, Leventaki V et al (2019) MicroRNA-17 acts as a tumor chemosensitizer by targeting JAB1/CSN5 in triple-negative breast cancer. Cancer Lett 465:12–23

    Article  CAS  Google Scholar 

  48. Wei Y, Liu G, Wu B et al (2018) Let-7d inhibits growth and metastasis in breast cancer by targeting Jab1/Cops5. Cell Physiol Biochem 47(5):2126–2135. https://doi.org/10.1159/000491523

    Article  CAS  PubMed  Google Scholar 

  49. Hsu MC, Chang HC, Hung WC (2007) HER-2/neu transcriptionally activates Jab1 expression via the AKT/beta-catenin pathway in breast cancer cells. Endocr Relat Cancer 14(3):655–667. https://doi.org/10.1677/ERC-07-0077

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Barnes RO, West NR et al (2008) Jab1 is a target of EGFR signaling in ERα-negative breast cancer. Breast Cancer Res 10(3):R51

    Article  Google Scholar 

  51. Lue H, Thiele M, Franz J et al (2007) Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene 26(35):5046–5059. https://doi.org/10.1038/sj.onc.1210318

    Article  CAS  PubMed  Google Scholar 

  52. Kleemann RHA, Geiger G, Mischke R et al (2000) Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 408(6809):211–216

    Article  CAS  Google Scholar 

  53. Nam AR, Kim JW, Park JE et al (2019) Jab1 silencing inhibits proliferation and sensitizes to cisplatin in biliary tract cancer. Cancer Res Treat 51(3):886–900. https://doi.org/10.4143/crt.2018.375

    Article  CAS  PubMed  Google Scholar 

  54. Burger-Kentischer A, Finkelmeier D, Thiele M et al (2005) Binding of JAB1/CSN5 to MIF is mediated by the MPN domain but is independent of the JAMM motif. FEBS Lett 579(7):1693–1701

    Article  CAS  Google Scholar 

  55. Wang L, Du WQ, Xie M et al (2020) Jab1 promotes gastric cancer tumorigenesis via non-ubiquitin proteasomal degradation of p14ARF. Gastric Cancer. https://doi.org/10.1007/s10120-020-01087-z

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jie Y, Wang B, Yongfu C (2018) CSN5/Jab1 facilitates non-small cell lung cancer cell growth through stabilizing survivin. Biochem Biophys Res Commun 500:132

    Article  Google Scholar 

  57. Li PH, Wang L, Pan YJ et al (2018) Suppression of Jab1 expression inhibits proliferation and promotes apoptosis of AMC-HN-8 cells. Oncol Lett 15:5137–5142

    PubMed  PubMed Central  Google Scholar 

  58. Zhu Y, Qiu Z, Zhang X et al (2017) Jab1 promotes glioma cell proliferation by regulating Siah1/beta-catenin pathway. J Neurooncol 131(1):31–39. https://doi.org/10.1007/s11060-016-2279-6

    Article  CAS  PubMed  Google Scholar 

  59. Pan Y, Yang H, Claret FX (2014) Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer. Cancer Biol Ther 15(3):256–262. https://doi.org/10.4161/cbt.27823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pan Y, Claret FX (2012) Targeting Jab1/CSN5 in nasopharyngeal carcinoma. Cancer Lett 326(2):155–160. https://doi.org/10.1016/j.canlet.2012.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tomlins SA, Rhodes DR, Perner S et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648. https://doi.org/10.1126/science.1117679

    Article  CAS  PubMed  Google Scholar 

  62. Guohong L, Claret FX, Fuling Z et al (2018) Jab1/COPS5 as a novel biomarker for diagnosis, prognosis, therapy prediction and therapeutic tools for human cancer. Front Pharmacol 9:135

    Article  Google Scholar 

  63. Lu R, Hu X, Zhou J et al (2016) COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR. Nat Commun 7:12044

    Article  CAS  Google Scholar 

  64. Liu G, Yu M, Wu B et al (2019) Jab1/Cops5 contributes to chemoresistance in breast cancer by regulating Rad51. Cell Signal 53:39–48. https://doi.org/10.1016/j.cellsig.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  65. Fullbeck M, Huang X, Dumdey R et al (2005) Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells. BMC Cancer 5:97. https://doi.org/10.1186/1471-2407-5-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Momtazi-Borojeni AA, Ghasemi F, Hesari A et al (2018) Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma. Curr Pharm Des 24(19):2121–2128. https://doi.org/10.2174/1381612824666180522105202

    Article  CAS  PubMed  Google Scholar 

  67. Li J, Wang Y, Yang C et al (2009) Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Mol Pharmacol 76(1):81

    Article  CAS  Google Scholar 

  68. Lim SO, Li CW, Xia W et al (2016) Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell 30(6):925–939. https://doi.org/10.1016/j.ccell.2016.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pulvino M, Chen L, Oleksyn D et al (2015) Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget 6(17):14796–14813. https://doi.org/10.18632/oncotarget.4193

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schlierf A, Altmann E, Quancard J et al (2016) Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun 7:13166. https://doi.org/10.1038/ncomms13166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kumar V, Naumann M, Stein M (2018) Computational studies on the inhibitor selectivity of human JAMM deubiquitinylases Rpn11 and CSN5. Front Chem 6:480. https://doi.org/10.3389/fchem.2018.00480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31900558, 81872200), the Natural Science Foundation of Hubei Province (Grant No. 2020CFB298), the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund (Grant No. ZNPY2019002), and the Fundamental Research Funds for the Central Universities (Grant No. 2042019kf0139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohong Liu or Yunbao Pan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Wang, D., Liu, G. et al. Jab1/Cops5: a promising target for cancer diagnosis and therapy. Int J Clin Oncol 26, 1159–1169 (2021). https://doi.org/10.1007/s10147-021-01933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-021-01933-9

Keywords

Navigation