Skip to main content
Log in

Genome-wide identification, expansion, and evolution analysis of homeobox genes and their expression profiles during root development in carrot

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The homeobox gene family, a large family represented by transcription factors, has been implicated in secondary growth, early embryo patterning, and hormone response pathways in plants. However, reports about the information and evolutionary history of the homeobox gene family in carrot are limited. In the present study, a total of 130 homeobox family genes were identified in the carrot genome. Specific codomain and phylogenetic analyses revealed that the genes were classified into 14 subgroups. Whole genome and proximal duplication participated in the homeobox gene family expansion in carrot. Purifying selection also contributed to the evolution of carrot homeobox genes. In Gene Ontology (GO) analysis, most members of the HD-ZIP III and IV subfamilies were found to have a lipid binding (GO:0008289) term. Most HD-ZIP III and IV genes also harbored a steroidogenic acute regulatory protein-related lipid transfer (START) domain. These results suggested that the HD-ZIP III and IV subfamilies might be related to lipid transfer. Transcriptome and quantitative real-time PCR (RT-qPCR) data indicated that members of the WOX and KNOX subfamilies were likely implicated in carrot root development. Our study provided a useful basis for further studies on the complexity and function of the homeobox gene family in carrot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

DAS:

Days after sowing

DD:

Dispersed gene duplication

HD:

Homeodomain

HD-ZIP:

HD-leucine zipper

LD:

Luminidependens

LS-WGDs:

Lineage-specific WGDs

PD:

Proximal duplication

RT-qPCR:

Quantitative real-time PCR

TD:

Tandem duplication

TSD:

DNA-transposed duplication

WGD:

Whole genome duplication

WOX:

WUSCHEL-like homeobox

References

  • Bhattacharjee A, Ghangal R, Garg R, Jain M (2015) Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling. PLoS One 10(3):e0119198

    Article  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16(7):1679–1691

    Article  CAS  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4(1):10

    Article  Google Scholar 

  • Chan RL, Gago GM, Palena CM, Gonzalez DH (1998) Homeoboxes in plant development. Biochim Biophys Acta Gene Struct Expr 1442(1):1–19

    Article  CAS  Google Scholar 

  • De Smet R, Adams KL, Vandepoele K, Van Montagu MC, Maere S, Van de Peer Y (2013) Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci 110(8):2898–2903

    Article  Google Scholar 

  • Desplan C, Theis J, O'Farrell PH (1988) The sequence specificity of homeodomain-DNA interaction. Cell 54(7):1081–1090

    Article  CAS  Google Scholar 

  • Deveaux Y, Toffano-Nioche C, Claisse G, Thareau V, Morin H, Laufs P, Moreau H, Kreis M, Lecharny A (2008) Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evol Biol 8(1):291

    Article  Google Scholar 

  • Di Giacomo E, Laffont C, Sciarra F, Iannelli MA, Frugier F, Frugis G (2017) KNAT3/4/5‐like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development. New Phytol 213(2):822–837

    Article  Google Scholar 

  • Du J, Groover A (2010) Transcriptional regulation of secondary growth and wood formation. J Integr Plant Biol 52(1):17–27

    Article  CAS  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195

    Article  CAS  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J (2013) Pfam: the protein families database. Nucleic Acids Res 42(D1):D222–D230

    Article  Google Scholar 

  • Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43(W1):W30–W38

    Article  CAS  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  Google Scholar 

  • Ganko EW, Meyers BC, Vision TJ (2007) Divergence in expression between duplicated genes in Arabidopsis. Mol Biol Evol 24(10):2298–2309

    Article  CAS  Google Scholar 

  • Gehring WJ, Affolter M, Burglin T (1994) Homeodomain proteins. Annu Rev Biochem 63(1):487–526

    Article  CAS  Google Scholar 

  • Groover AT, Mansfield SD, DiFazio SP, Dupper G, Fontana JR, Millar R, Wang Y (2006) The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol Biol 61(6):917–932

    Article  CAS  Google Scholar 

  • Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu S-H (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148(2):993–1003

    Article  CAS  Google Scholar 

  • Hedman H, Zhu TQ, Arnold SV, Sohlberg JJ (2013) Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol 13(1):89

    Article  CAS  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22(8):2618–2629

    Article  CAS  Google Scholar 

  • Holland PW (2013) Evolution of homeobox genes. Wiley Interdiscip Rev Dev Biol 2(1):31–45

    Article  CAS  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48(6):657–666

    Article  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2008) Genome‐wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J 275(11):2845–2861

    Article  CAS  Google Scholar 

  • Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ (2010) WOX4 promotes procambial development. Plant Physiol 152(3):1346–1356

    Article  CAS  Google Scholar 

  • Jørgensen JE, Grønlund M, Pallisgaard N, Larsen K, Marcker KA, Ostergaard Jensen E (1999) A new class of plant homeobox genes is expressed in specific regions of determinate symbiotic root nodules. Plant Mol Biol 40(1):65–77

    Article  Google Scholar 

  • Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yammguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6(12):1877–1887

    Article  CAS  Google Scholar 

  • Larson PR (2012) The vascular cambium: development and structure. Springer, Berlin

    Google Scholar 

  • Lehti-Shiu MD, Zou C, Hanada K, Shiu S-H (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150(1):12–26

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2011) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(D1):D302–D305

    Article  Google Scholar 

  • Lynch M (2002) Gene duplication and evolution. Science 297(5583):945–947

    Article  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102(15):5454–5459

    Article  CAS  Google Scholar 

  • Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  Google Scholar 

  • Mukherjee K, Brocchieri L, Bürglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26(12):2775–2794

    Article  CAS  Google Scholar 

  • Panchy N, Lehti-Shiu M, Shiu S-H (2016) Evolution of gene duplication in plants. Plant Physiol 171(4):2294–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Freeling M, Tang H, Wang X (2010) Insights from the comparison of plant genome sequences. Annu Rev Plant Biol 61:349–372

    Article  CAS  Google Scholar 

  • Qiao X, Li L, Yin H, Liu X, Wang D, Wu J, Wu J, Zhang S (2015) Modes of gene duplication and gene family expansion and evolution in Chinese white pear. In: Plant and Animal Genome XXIII Conference, January: 2015: 10–14

  • Ragni L, Hardtke CS (2014) Small but thick enough—the Arabidopsis hypocotyl as a model to study secondary growth. Physiol Plant 151(2):164–171

    Article  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859):64–69

    Article  CAS  Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446(7137):811–814

    Article  CAS  Google Scholar 

  • Siebers T, Catarino B, Agusti J (2017) Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta). Planta 245(3):539–548

    Article  CAS  Google Scholar 

  • Soltis PS, Marchant DB, Van de Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35:119–125

    Article  CAS  Google Scholar 

  • Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186(3):577–592

    Article  CAS  Google Scholar 

  • Stolarczyk J, Janick J (2011) Carrot: history and iconography. Chronica Hortic 51:13–18

    Google Scholar 

  • Suer S, Agusti J, Sanchez P, Schwarz M, Greb T (2011) WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23(9):3247–3259

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  • Tian C, Jiang Q, Wang F, Wang G-L, Xu Z-S, Xiong A-S (2015) Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS One 10(2):e0117569

    Article  Google Scholar 

  • Veraksa A, Del Campo M, McGinnis W (2000) Developmental patterning genes and their conserved functions: from model organisms to humans. Mol Genet Metab 69(2):85–100

    Article  CAS  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  Google Scholar 

  • Wang Y (2013) Locally duplicated ohnologs evolve faster than nonlocally duplicated ohnologs in Arabidopsis and rice. Genome Biol Evol 5(2):362–369

    Article  Google Scholar 

  • Wang Y, Wang X, Tang H, Tan X, Ficklin SP, Feltus FA, Paterson AH (2011) Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS One 6(12):e28150

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T-H, Jin H, Marler B, Guo H (2012a) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40(7):e49–e49

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Paterson AH (2012b) Genome and gene duplications and gene expression divergence: a view from plants. Ann N Y Acad Sci 1256(1):1–14

    Article  Google Scholar 

  • Wang Y, Tan X, Paterson AH (2013) Different patterns of gene structure divergence following gene duplication in Arabidopsis. BMC Genomics 14(1):652

    Article  CAS  Google Scholar 

  • Wang G-L, Xiong F, Que F, Xu Z-S, Wang F, Xiong A-S (2015a) Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development. Hortic Res 2:15028

    Article  Google Scholar 

  • Wang G-L, Jia X-L, Xu Z-S, Wang F, Xiong A-S (2015b) Sequencing, assembly, annotation, and gene expression: novel insights into the hormonal control of carrot root development revealed by a high-throughput transcriptome. Mol Gen Genomics 290(4):1379–1391

    Article  CAS  Google Scholar 

  • Wang G-M, Yin H, Qiao X, Tan X, Gu C, Wang B-H, Cheng R, Wang Y-Z, Zhang S-L (2016) F-box genes: genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri). Plant Sci 253:164–175

    Article  CAS  Google Scholar 

  • Wijnheijmer EHM, Brandenburg WA, Borg SJT (1989) Interactions between wild and cultivated carrots (Daucus carota, L.) in the Netherlands. Euphytica 40(1–2):147–154

    Article  Google Scholar 

  • Woerlen N, Allam G, Popescu A, Corrigan L, Pautot V, Hepworth SR (2017) Repression of blade-on-petiole genes by knox homeodomain protein brevipedicellus is essential for differentiation of secondary xylem in Arabidopsis root. Planta 245(6):1079–1090

    Article  CAS  Google Scholar 

  • Xu Z-S, Tan H-W, Wang F, Hou X-L, Xiong A-S (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database 2014:bau096

    Article  Google Scholar 

  • Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics, Proteomics Bioinformatics 4(4):259–263

    Article  CAS  Google Scholar 

  • Zhang X, Zong J, Liu J, Yin J, Zhang D (2010) Genome‐wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. J Integr Plant Biol 52(11):1016–1026

    Article  CAS  Google Scholar 

  • Zhang Z, Xiao J, Wu J, Zhang H, Liu G, Wang X, Dai L (2012) ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun 419(4):779–781

    Article  CAS  Google Scholar 

  • Zhong YF, Holland PW (2011) HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology. Evol Dev 13(6):567–568

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the New Century Excellent Talents in University (NCET-11-0670), Jiangsu Natural Science Foundation (BK20130027), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: ASX FQ. Performed the experiments: FQ GLW ZSX TL YHW. Analyzed the data: FQ. Contributed reagents/materials/analysis tools: ASX. Wrote the paper: FQ. Revised the paper: ASX GLW. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ai-Sheng Xiong.

Electronic supplementary material

ESM 1

S1 Figure. Multiple sequence alignment of homedomain sequence of all carrot homeobox genes. (PDF 22517 kb)

ESM 2

S2 Figure. Phylogenetic tree of KNOX genes from carrot and Arabidopsis. (PDF 914 kb)

ESM 3

S1 Table. List of 130 carrot homeobox genes and their related information. (XLSX 28 kb)

ESM 4

S2 Table. Pfam domain of the 130 carrot homeobox genes. (XLSX 15 kb)

ESM 5

S3 Table. List of homeobox genes from Arabidopsis thaliana, Oryza sativa and carrot. (XLSX 25 kb)

ESM 6

S4 Table. Ka/Ks values of gene pairs from different duplication modes. (XLSX 27 kb)

ESM 7

S5 Table. List of Gene Ontology (GO) ID of carrot homeobox genes. (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Que, F., Wang, GL., Li, T. et al. Genome-wide identification, expansion, and evolution analysis of homeobox genes and their expression profiles during root development in carrot. Funct Integr Genomics 18, 685–700 (2018). https://doi.org/10.1007/s10142-018-0624-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-018-0624-x

Keywords

Navigation