Skip to main content
Log in

Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Repression of boundary genes by KNOTTED1-like homeodomain transcription factor BREVIPEDICELLUS promotes the differentiation of phase II secondary xylem in Arabidopsis roots.

Plant growth and development relies on the activity of meristems. Boundaries are domains of restricted growth that separate forming organs and the meristem. Class I KNOX homeodomain transcription factors are important regulators of meristem maintenance. Members of this class including BREVIDICELLUS also called KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (BP/KNAT1) fulfill this function in part by spatially regulating boundary genes. The vascular cambium is a lateral meristem that allows for radial expansion of organs during secondary growth. We show here that BP/KNAT1 repression of boundary genes plays a crucial role in root secondary growth. In particular, exclusion of BLADE-ON-PETIOLE1/2 (BOP1/2) and other members of this module from xylem is required for the differentiation of lignified fibers and vessels during the xylem expansion phase of root thickening. These data reveal a previously undiscovered role for boundary genes in the root and shed light on mechanisms controlling wood development in trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATH1:

ARABIDOPSIS THALIANA HOMEOBOX GENE1

BP:

BREVIPEDICELLUS

BOP:

BLADE-ON-PETIOLE

PNY:

PENNYWISE

PNF:

POUND-FOOLISH

SAM:

Shoot apical meristem

TALE:

Three amino acid loop extension

KNOX:

KNOTTED1-like homeobox

KNAT:

KNOTTED-like from Arabidopsis thaliana

BELL:

BELL1-like

HCl:

Hydrochloric acid

Col:

Columbia

GA:

Gibberellin

GUS:

β-Glucuronidase

ARK:

ARBORKNOX

References

  • Altamura MM, Possenti M, Matteucci A, Baima S, Ruberti I, Morelli G (2001) Development of the vascular system in the inflorescence stem of Arabidopsis. New Phytol 151:381–389

    Article  Google Scholar 

  • Andrés F, Branchat-Romera M, Martínez-Gallegos R, Patel V, Schneeberger K, Jang S, Altmüller J, Nürnberg P, Coupland G (2015) Floral induction in Arabidopsis by FLOWERING LOCUS T requires direct repression of BLADE-ON-PETIOLE genes by the homeodomain protein PENNYWISE. Plant Physiol 169:2187–2199

    PubMed  PubMed Central  Google Scholar 

  • Barra-Jiménez A, Ragni L (2017) Secondary development in the stem: when Arabidopsis and trees are closer than it seems. Curr Opin Plant Biol 35:145–151

    Article  PubMed  Google Scholar 

  • Beck CB (2010) An introduction to plant structure and development, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Belles-Boix E, Hamant O, Witiak SM, Morin H, Traas J, Pautot V (2006) KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell 18:1900–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bencivenga S, Serrano-Mislata A, Bush M, Fox S, Sablowski R (2016) Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis. Dev Cell 39:198–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt AM, Etchells JP, Canales C, Lagodienko A, Dickinson H (2004) VAAMANA-a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene 328:103–111

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  • Busse JS, Evet RF (1999) Vascular differentiation and transition in seedling of Arabidopsis thaliana (Brassicaceae). Int J Plant Sci 160:241–251

    Article  Google Scholar 

  • Byrne ME, Simorowski J, Martienssen RA (2002) ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129:1957–1965

    CAS  PubMed  Google Scholar 

  • Byrne ME, Groover AT, Fontana JR, Martienssen RA (2003) Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development 130:3941–3950

    Article  CAS  PubMed  Google Scholar 

  • Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114:594–600

    Article  CAS  PubMed  Google Scholar 

  • Couzigou J-M, Zhukov V, Mondy S, Abu el Heba G, Cosson V, Noel Ellis TH, Ambrose M, Wen J, Tedege M, Tikhonovich I, Mysore KS, Putterill J, Hofer J, Borisov AY, Ratet P (2012) NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell 24:4498–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Rybel B, Mähönen AP, Helariutta Y, Weijers D (2016) Plant vascular development: from early specification to differentiation. Nat Rev Mol Cell Biol 17:30–40

    Article  PubMed  Google Scholar 

  • Dean G, Casson S, Lindsey K (1994) KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation. Plant Mol Biol 54:71–84

    Article  Google Scholar 

  • Dolan L, Roberts K (1995) Secondary thickening in roots of Arabidopsis thaliana: anatomy and cell surface changes. New Phytol 131:121–128

    Article  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organization of the Arabidopsis thaliana root. Development 119:71–84

    CAS  PubMed  Google Scholar 

  • Douglas SJ, Riggs CD (2005) Pedicel development in Arabidopsis thaliana: contribution of vascular positioning and the role of BREVIPEDICELLUS and ERECTA genes. Dev Biol 284:451–463

    Article  CAS  PubMed  Google Scholar 

  • Douglas SJ, Chuck G, Dengle RE, Pelecanda L, Riggs CD (2002) KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. Plant Cell 14:547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Groover A (2010) Transcriptional regulation of secondary growth and wood formation. J Int Plant Biol 52:17–27

    Article  CAS  Google Scholar 

  • Du J, Mansfield SD, Groover AT (2009) The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth. Plant J 60:1000–1014

    Article  CAS  PubMed  Google Scholar 

  • Esau K (1965) Vascular differentiation in plants. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Gómez-Mena C, Sablowski R (2008) ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell 20:2059–2072

    Article  PubMed  PubMed Central  Google Scholar 

  • Groover AT, Mansfield SD, DiFazio SP, Dupper G, Fontana JR, Millar R, Wang Y (2006) The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating shoot apical meristem and the vascular cambium. Plant Mol Biol 61:917–932

    Article  CAS  PubMed  Google Scholar 

  • Hamant O, Pautot V (2010) Plant development: a TALE story. CR Biol 333:371–381

    Article  CAS  Google Scholar 

  • Haughn GW, Somerville C (1986) Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204:430–434

    Article  CAS  Google Scholar 

  • Hepworth SR, Pautot VA (2015) Beyond the divide: boundaries for patterning and stem cell regulation in plants. Front Plant Sci 6:1052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun JH, Ha CM, Fletcher JC (2010) BLADE-ON-PETIOLE1 co-ordinates organ determinacy and axial polarity in Arabidopsis by directly activating ASYMMETRIC LEAVES2. Plant Cell 22:62–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M, Tabb P, Hepworth SR (2012a) BLADE-ON-PETIOLE1 and 2 regulate Arabidopsis inflorescence architecture in conjunction with homeobox genes KNAT6 and ATH1. Plant Signal Behav 7:7–15

    Article  Google Scholar 

  • Khan M, Xu M, Murmu J, Tabb P, Liu Y, Storey K, McKim SM, Douglas CJ, Hepworth SR (2012b) Antagonistic interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture. Plant Physiol 158:946–960

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Ragni L, Tabb P, Salasini BC, Chatfield S, Datla R, Lock J, Kuai X, Despres C, Proveniers M, Yongguo C, Xiang D, Morin H, Rullière J-P, Citerne S, Hepworth SR, Pautot V (2015) Repression of lateral organ boundary genes by PENNYWISE and POUND-FOOLISH is essential for meristem maintenance and flowering in Arabidopsis. Plant Physiol 169:2166–2186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lal S, Pacis LB, Smith HMS (2011) Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis. Mol Plant 6:1123–1132

    Article  Google Scholar 

  • Li Y, Pi L, Huang H, Xu L (2012) ATH1 and KNAT2 proteins act together in regulation of inflorescence architecture. J Exp Bot 63:1423–1433

    Article  CAS  PubMed  Google Scholar 

  • Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, Hall HC, Helizon H, Jin X, Helaruitta Y, Nilsson O, Polle A, Fischer U (2014) Class I KNOX transcription factors promote differentation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development 141:4311–4319

    Article  CAS  PubMed  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  CAS  PubMed  Google Scholar 

  • McKim SM, Stenvik G-E, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, Haughn GW (2008) The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135:1537–1546

    Article  CAS  PubMed  Google Scholar 

  • Mele G, Ori N, Sato Y, Hake S (2003) The knotted1-like homeobox gene BREVIDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev 17:2088–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashima S, Sebastian J, Lee J-Y, Helariutta Y (2013) Stem cell function during plant vascular development. EMBO J 32:178–193

    Article  CAS  PubMed  Google Scholar 

  • Nieminen K, Blomster T, Helariutta Y, Mahonen AP (2015) Vascular cambium development. The Arabidopsis Book 13:e0177

    Article  PubMed  PubMed Central  Google Scholar 

  • Norberg M, Holmlund M, Nilsson O (2005) The BLADE-ON-PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132:2203–2213

    Article  CAS  PubMed  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Proveniers M, Rutjens B, Brand M, Smeekens S (2007) The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J 52:899–913

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Zheng H (2013) Modulation of root-skewing responses by KNAT1 in Arabidopsis thaliana. Plant J 76:380–392

    Article  CAS  PubMed  Google Scholar 

  • Ragni L, Hardtke CS (2014) Small but thick enough—the Arabidopsis hypocotyl as a model to study secondary growth. Physiol Plant 151:164–171

    Article  CAS  PubMed  Google Scholar 

  • Ragni L, Belles-Boix E, Günl M, Pautot V (2008) Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis inflorescences. Plant Cell 20:888–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheime C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M (2009) Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J 58:641–654

    Article  CAS  PubMed  Google Scholar 

  • Sanchez P, Nehlin L, Greb T (2012) From thin to thick: major transitions during stem development. Trends Plant Sci 17:113–121

    Article  CAS  PubMed  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  • Scheres B, Di Laurenzio L, Willemsen V, Hauser M-T, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affect the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:52–62

    Google Scholar 

  • Scheres B, Benfey P, Dolan L (2002) Root development. The Arabidopsis Book 1:e0101

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell activity. Plant Cell 16:2278–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signaling in cambium formation. Plant J 63:811–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458–463

    Article  CAS  PubMed  Google Scholar 

  • Smith HMS, Hake S (2003) The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell 15:1717–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strabala TJ, MacMillan CP (2013) The Arabidopsis wood model-the case for the inflorescence stem. Plant Sci 210:193–205

    Article  CAS  PubMed  Google Scholar 

  • Townsley BT, Sinha NR, Kang J (2013) KNOX1 genes regulate lignin deposition and composition in monocots and dicots. Front Plant Sci 4:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Truernit E, Siemering KR, Hodge S, Grbic V, Haseloff J (2006) A map of KNAT gene expression in the Arabidopsis root. Plant Mol Biol 60:1–20

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Hake S (2015) Diverse functions of KNOX transcription factors in the diploid body plan of plants. Curr Opin Plant Biol 27:91–96

    Article  CAS  PubMed  Google Scholar 

  • Ung N, Smith HMS (2011) Regulation of shoot meristem integrity during Arabidopsis vegetative development. Plant Signal Behav 6:1250–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen RA, Selvaraj G, Datla R (2002) The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc Natl Acad Sci USA 99:4730–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwanath SJ, Delude C, Domergue F, Rowland O (2015) Suberin: biosynthesis, regulation, and polyme assembly of a protective extracellular barrier. Plant Cell Rep 34:573–586

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Hu T, McKim SM, Murmu J, Haughn GW, Hepworth SR (2010) Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant J 63:974–989

    Article  CAS  PubMed  Google Scholar 

  • Ye Z-H, Zhong R (2015) Molecular control of wood formation in trees. J Exp Bot 66:4119–4131

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Yang S, Chen C-Y, Li C, Shan W, Lu W, Cui Y, Liu X, Wu K (2015) Arabidopsis BREVIPEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 in control of inflorescence architecture. PLoS Genet 11:e1005125

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant (No. 327195) to SRH and NSERC Undergraduate Summer Research Assistantships to NW. The IJPB benefits from the support of the Labex Saclay Plant Sciences (ANR-10-LABX-0040-SPS). Thank you to Jean-Christophe Palauqui for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley R. Hepworth.

Additional information

G. Allam and A. Popescu contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woerlen, N., Allam, G., Popescu, A. et al. Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root. Planta 245, 1079–1090 (2017). https://doi.org/10.1007/s00425-017-2663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2663-2

Keywords

Navigation